» Articles » PMID: 37045841

WHIM Syndrome-linked CXCR4 Mutations Drive Osteoporosis

Abstract

WHIM Syndrome is a rare immunodeficiency caused by gain-of-function CXCR4 mutations. Here we report a decrease in bone mineral density in 25% of WHIM patients and bone defects leading to osteoporosis in a WHIM mouse model. Imbalanced bone tissue is observed in mutant mice combining reduced osteoprogenitor cells and increased osteoclast numbers. Mechanistically, impaired CXCR4 desensitization disrupts cell cycle progression and osteogenic commitment of skeletal stromal/stem cells, while increasing their pro-osteoclastogenic capacities. Impaired osteogenic differentiation is evidenced in primary bone marrow stromal cells from WHIM patients. In mice, chronic treatment with the CXCR4 antagonist AMD3100 normalizes in vitro osteogenic fate of mutant skeletal stromal/stem cells and reverses in vivo the loss of skeletal cells, demonstrating that proper CXCR4 desensitization is required for the osteogenic specification of skeletal stromal/stem cells. Our study provides mechanistic insights into how CXCR4 signaling regulates the osteogenic fate of skeletal cells and the balance between bone formation and resorption.

Citing Articles

CXCR4 antagonism ameliorates leukocyte abnormalities in a preclinical model of WHIM syndrome.

Roland L, Nguyen C, Zmajkovicova K, Khamyath M, Kalogeraki M, Schell B Front Immunol. 2024; 15:1468823.

PMID: 39588369 PMC: 11586337. DOI: 10.3389/fimmu.2024.1468823.


CXCR4 signaling determines the fate of hematopoietic multipotent progenitors by stimulating mTOR activity and mitochondrial metabolism.

Rondeau V, Kalogeraki M, Roland L, Nader Z, Gourhand V, Bonaud A Sci Signal. 2024; 17(860):eadl5100.

PMID: 39471249 PMC: 11733996. DOI: 10.1126/scisignal.adl5100.


The complex nature of CXCR4 mutations in WHIM syndrome.

Rodriguez-Frade J, Gonzalez-Granado L, Santiago C, Mellado M Front Immunol. 2024; 15:1406532.

PMID: 39035006 PMC: 11257845. DOI: 10.3389/fimmu.2024.1406532.


Periodontal disease in patients with WHIM syndrome.

Brenchley L, McDermott D, Gardner P, Silva L, Gao J, Cho E J Clin Periodontol. 2024; 51(4):464-473.

PMID: 38185798 PMC: 11000827. DOI: 10.1111/jcpe.13940.

References
1.
Ciucci T, Ibanez L, Boucoiran A, Birgy-Barelli E, Pene J, Abou-Ezzi G . Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut. 2014; 64(7):1072-81. DOI: 10.1136/gutjnl-2014-306947. View

2.
Tzeng Y, Chung N, Chen Y, Huang H, Chuang W, Lai D . Imbalanced Osteogenesis and Adipogenesis in Mice Deficient in the Chemokine Cxcl12/Sdf1 in the Bone Mesenchymal Stem/Progenitor Cells. J Bone Miner Res. 2017; 33(4):679-690. DOI: 10.1002/jbmr.3340. View

3.
Nakamura Y, Arai F, Iwasaki H, Hosokawa K, Kobayashi I, Gomei Y . Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood. 2010; 116(9):1422-32. DOI: 10.1182/blood-2009-08-239194. View

4.
Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A . Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014; 29(3):340-9. PMC: 4051418. DOI: 10.1016/j.devcel.2014.03.013. View

5.
Zehentmeier S, Lim V, Ma Y, Fossati J, Ito T, Jiang Y . Dysregulated stem cell niches and altered lymphocyte recirculation cause B and T cell lymphopenia in WHIM syndrome. Sci Immunol. 2022; 7(75):eabo3170. PMC: 9614684. DOI: 10.1126/sciimmunol.abo3170. View