» Articles » PMID: 36970768

Multi-Site Conformational Exchange in the Synthetic Neomycin-Sensing Riboswitch Studied by F NMR

Overview
Specialty Chemistry
Date 2023 Mar 27
PMID 36970768
Authors
Affiliations
Soon will be listed here.
Abstract

The synthetic neomycin-sensing riboswitch interacts with its cognate ligand neomycin as well as with the related antibiotics ribostamycin and paromomycin. Binding of these aminoglycosides induces a very similar ground state structure in the RNA, however, only neomycin can efficiently repress translation initiation. The molecular origin of these differences has been traced back to differences in the dynamics of the ligand:riboswitch complexes. Here, we combine five complementary fluorine based NMR methods to accurately quantify seconds to microseconds dynamics in the three riboswitch complexes. Our data reveal complex exchange processes with up to four structurally different states. We interpret our findings in a model that shows an interplay between different chemical groups in the antibiotics and specific bases in the riboswitch. More generally, our data underscore the potential of F NMR methods to characterize complex exchange processes with multiple excited states.

Citing Articles

Deciphering ligand and metal ion dependent intricate folding landscape of Vc2 c-di-GMP riboswitch aptamer.

Shin J, Choi S, An S, Bang K, Song H, Suh J Nucleic Acids Res. 2025; 53(1.

PMID: 39777471 PMC: 11705072. DOI: 10.1093/nar/gkae1296.


Chemo-enzymatic production of base-modified ATP analogues for polyadenylation of RNA.

Mitton-Fry R, Eschenbach J, Schepers H, Rasche R, Erguven M, Kummel D Chem Sci. 2024; 15(32):13068-13073.

PMID: 39148801 PMC: 11322958. DOI: 10.1039/d4sc03769c.


Molecular dynamics in multidimensional space explains how mutations affect the association path of neomycin to a riboswitch.

Chyzy P, Kulik M, Shinobu A, Re S, Sugita Y, Trylska J Proc Natl Acad Sci U S A. 2024; 121(15):e2317197121.

PMID: 38579011 PMC: 11009640. DOI: 10.1073/pnas.2317197121.


F NMR Untersuchung des Konformationsaustauschs mehrerer Zustände im synthetischen Neomycin-bindenden Riboschalter.

Overbeck J, Vogele J, Nussbaumer F, Duchardt-Ferner E, Kreutz C, Wohnert J Angew Chem Weinheim Bergstr Ger. 2024; 135(23):e202218064.

PMID: 38516132 PMC: 10953372. DOI: 10.1002/ange.202218064.


2'-F labelling of ribose in RNAs: a tool to analyse RNA/protein interactions by NMR in physiological conditions.

Kara H, Axer A, Muskett F, Bueno-Alejo C, Paschalis V, Taladriz-Sender A Front Mol Biosci. 2024; 11:1325041.

PMID: 38419689 PMC: 10899400. DOI: 10.3389/fmolb.2024.1325041.


References
1.
Li P, Martins I, Rosen M . The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements. J Biomol NMR. 2011; 51(1-2):57-70. PMC: 3229927. DOI: 10.1007/s10858-011-9541-1. View

2.
Chyzy P, Kulik M, Re S, Sugita Y, Trylska J . Mutations of N1 Riboswitch Affect its Dynamics and Recognition by Neomycin Through Conformational Selection. Front Mol Biosci. 2021; 8:633130. PMC: 7942488. DOI: 10.3389/fmolb.2021.633130. View

3.
Tugarinov V, Libich D, Meyer V, Roche J, Clore G . The energetics of a three-state protein folding system probed by high-pressure relaxation dispersion NMR spectroscopy. Angew Chem Int Ed Engl. 2015; 54(38):11157-61. PMC: 4692720. DOI: 10.1002/anie.201505416. View

4.
Mulder F, Mittermaier A, Hon B, Dahlquist F, Kay L . Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol. 2001; 8(11):932-5. DOI: 10.1038/nsb1101-932. View

5.
Neudecker P, Korzhnev D, Kay L . Assessment of the effects of increased relaxation dispersion data on the extraction of 3-site exchange parameters characterizing the unfolding of an SH3 domain. J Biomol NMR. 2006; 34(3):129-35. DOI: 10.1007/s10858-006-0001-2. View