» Articles » PMID: 36958327

Generalizable Biomarker Prediction from Cancer Pathology Slides with Self-supervised Deep Learning: A Retrospective Multi-centric Study

Abstract

Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient.

Citing Articles

Assessing Genotype-Phenotype Correlations with Deep Learning in Colorectal Cancer: A Multi-Centric Study.

Gustav M, van Treeck M, Reitsam N, Carrero Z, Loeffler C, Loeffler C medRxiv. 2025; .

PMID: 39973981 PMC: 11838662. DOI: 10.1101/2025.02.04.25321660.


EFHD1 Activates SIK3 to Limit Colorectal Cancer Initiation and Progression via the Hippo Pathway.

Huang Q, Tang X, Gan C, Deng Q, Zhi S, Huang Q J Cancer. 2025; 16(4):1348-1362.

PMID: 39895792 PMC: 11786025. DOI: 10.7150/jca.103229.


Deep learning helps discriminate between autoimmune hepatitis and primary biliary cholangitis.

Gerussi A, Saldanha O, Cazzaniga G, Verda D, Carrero Z, Engel B JHEP Rep. 2025; 7(2):101198.

PMID: 39829723 PMC: 11741034. DOI: 10.1016/j.jhepr.2024.101198.


Deep Learning Model for Predicting Immunotherapy Response in Advanced Non-Small Cell Lung Cancer.

Rakaee M, Tafavvoghi M, Ricciuti B, Alessi J, Cortellini A, Citarella F JAMA Oncol. 2024; 11(2):109-118.

PMID: 39724105 PMC: 11843371. DOI: 10.1001/jamaoncol.2024.5356.


Deep learning application in prediction of cancer molecular alterations based on pathological images: a bibliographic analysis via CiteSpace.

Xiaojian Y, Zhanbo Q, Jian C, Zefeng W, Jian L, Jin L J Cancer Res Clin Oncol. 2024; 150(10):467.

PMID: 39422817 PMC: 11489169. DOI: 10.1007/s00432-024-05992-z.


References
1.
Kather J, Heij L, Grabsch H, Loeffler C, Echle A, Muti H . Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer. 2021; 1(8):789-799. PMC: 7610412. DOI: 10.1038/s43018-020-0087-6. View

2.
Kather J, Pearson A, Halama N, Jager D, Krause J, Loosen S . Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019; 25(7):1054-1056. PMC: 7423299. DOI: 10.1038/s41591-019-0462-y. View

3.
Arslan S, Schmidt J, Bass C, Mehrotra D, Geraldes A, Singhal S . A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images. Commun Med (Lond). 2024; 4(1):48. PMC: 10942985. DOI: 10.1038/s43856-024-00471-5. View

4.
Lee S, Song I, Jang H . Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer. Int J Cancer. 2021; 149(3):728-740. DOI: 10.1002/ijc.33599. View

5.
Bera K, Schalper K, Rimm D, Velcheti V, Madabhushi A . Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019; 16(11):703-715. PMC: 6880861. DOI: 10.1038/s41571-019-0252-y. View