» Articles » PMID: 36950111

Matrix Stiffness Induces Epithelial-to-mesenchymal Transition Via Piezo1-regulated Calcium Flux in Prostate Cancer Cells

Overview
Journal iScience
Publisher Cell Press
Date 2023 Mar 23
PMID 36950111
Authors
Affiliations
Soon will be listed here.
Abstract

Cells utilize calcium channels as one of the main signaling mechanisms to sense changes in the extracellular space and convert these changes to intracellular signals. Calcium regulates several key signaling networks, such as the induction of EMT. The current study expands on the understanding of how EMT is controlled via the mechanosensitive calcium channel Piezo1 in cancerous cells, which senses changes in the extracellular matrix stiffness. We model the biophysical environment of healthy and cancerous prostate tissue using polyacrylamide gels of different stiffnesses. Significant increases in calcium steady-state concentration, vimentin expression, and aspect ratio, and decreases in E-cadherin expression were observed by increasing matrix stiffness and also after treatment with Yoda1, a chemical agonist of Piezo1. Overall, this study concludes that Piezo1-regulated calcium flux plays a role in prostate cancer cell metastatic potential by sensing changes in ECM stiffness and modulating EMT markers.

Citing Articles

Matrix stiffness regulates NPC invasiveness by modulating a mechanoresponsive TRPV4-Nox4-IL-8 signaling axis.

Zhang P, Yang D, Li K, Zhang J, Wang Z, Ma F J Cancer. 2025; 16(4):1324-1334.

PMID: 39895789 PMC: 11786026. DOI: 10.7150/jca.104235.


Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression.

Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S Biomark Res. 2025; 13(1):11.

PMID: 39849659 PMC: 11755887. DOI: 10.1186/s40364-025-00727-9.


Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Salinas E, Ruano-Rivadeneira F, Leal J, Caprile T, Torrejon M, Arriagada C Front Cell Dev Biol. 2025; 12():1457506.

PMID: 39834387 PMC: 11743681. DOI: 10.3389/fcell.2024.1457506.


Microfluidic Applications in Prostate Cancer Research.

Szewczyk K, Jiang L, Khawaja H, Miranti C, Zohar Y Micromachines (Basel). 2024; 15(10).

PMID: 39459070 PMC: 11509716. DOI: 10.3390/mi15101195.


Increased matrix stiffness in pituitary neuroendocrine tumors invading the cavernous sinus is activated by TAFs: focus on the mechanical signatures.

Xie T, Gao Y, Hu J, Luo R, Guo Y, Xie Q Endocrine. 2024; 87(1):281-294.

PMID: 39240459 DOI: 10.1007/s12020-024-04022-9.


References
1.
Zhu H, Zhang H, Jin F, Fang M, Huang M, Yang C . Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma. Oncotarget. 2014; 5(11):3455-71. PMC: 4116495. DOI: 10.18632/oncotarget.1903. View

2.
Leggett S, Sim J, Rubins J, Neronha Z, Williams E, Wong I . Morphological single cell profiling of the epithelial-mesenchymal transition. Integr Biol (Camb). 2016; 8(11):1133-1144. PMC: 5417362. DOI: 10.1039/c6ib00139d. View

3.
Gnanasambandam R, Ghatak C, Yasmann A, Nishizawa K, Sachs F, Ladokhin A . GsMTx4: Mechanism of Inhibiting Mechanosensitive Ion Channels. Biophys J. 2017; 112(1):31-45. PMC: 5231890. DOI: 10.1016/j.bpj.2016.11.013. View

4.
Choi H, Yang G, Abdal Dayem A, Saha S, Kim K, Yoo Y . Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res. 2019; 21(1):6. PMC: 6335853. DOI: 10.1186/s13058-018-1071-2. View

5.
Kamioka H, Sugawara Y, Murshid S, Ishihara Y, Honjo T, Takano-Yamamoto T . Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res. 2006; 21(7):1012-21. DOI: 10.1359/jbmr.060408. View