» Articles » PMID: 36930710

Characterization of Regional Differences in Resting-state FMRI with a Data-driven Network Model of Brain Dynamics

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2023 Mar 17
PMID 36930710
Authors
Affiliations
Soon will be listed here.
Abstract

Model-based data analysis of whole-brain dynamics links the observed data to model parameters in a network of neural masses. Recently, studies focused on the role of regional variance of model parameters. Such analyses however necessarily depend on the properties of preselected neural mass model. We introduce a method to infer from the functional data both the neural mass model representing the regional dynamics and the region- and subject-specific parameters while respecting the known network structure. We apply the method to human resting-state fMRI. We find that the underlying dynamics can be described as noisy fluctuations around a single fixed point. The method reliably discovers three regional parameters with clear and distinct role in the dynamics, one of which is strongly correlated with the first principal component of the gene expression spatial map. The present approach opens a novel way to the analysis of resting-state fMRI with possible applications for understanding the brain dynamics during aging or neurodegeneration.

Citing Articles

Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI.

Li G, Hsu L, Wu Y, Bozoki A, Shih Y, Yap P Commun Med (Lond). 2025; 5(1):17.

PMID: 39814858 PMC: 11735810. DOI: 10.1038/s43856-025-00736-7.


Role of homeostatic plasticity in critical brain dynamics following focal stroke lesions.

Rocha R, Zorzi M, Corbetta M Sci Rep. 2024; 14(1):31631.

PMID: 39738232 PMC: 11685905. DOI: 10.1038/s41598-024-80196-6.


Simulated brain networks reflecting progression of Parkinson's disease.

Jung K, Eickhoff S, Caspers J, Popovych O Netw Neurosci. 2024; 8(4):1400-1420.

PMID: 39735513 PMC: 11675161. DOI: 10.1162/netn_a_00406.


Disorder-specific neurodynamic features in schizophrenia inferred by neurodynamic embedded contrastive variational autoencoder model.

Ding C, Sun Y, Li K, Xie S, Yan H, Li P Transl Psychiatry. 2024; 14(1):496.

PMID: 39695106 PMC: 11655856. DOI: 10.1038/s41398-024-03200-7.


Multiscale effective connectivity analysis of brain activity using neural ordinary differential equations.

Chang Y, Chen Y, Stealey H, Zhao Y, Lu H, Contreras-Hernandez E PLoS One. 2024; 19(12):e0314268.

PMID: 39630698 PMC: 11616886. DOI: 10.1371/journal.pone.0314268.


References
1.
Brunton S, Proctor J, Kutz J . Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci U S A. 2016; 113(15):3932-7. PMC: 4839439. DOI: 10.1073/pnas.1517384113. View

2.
Deco G, Ponce-Alvarez A, Mantini D, Luca Romani G, Hagmann P, Corbetta M . Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci. 2013; 33(27):11239-52. PMC: 3718368. DOI: 10.1523/JNEUROSCI.1091-13.2013. View

3.
Demirtas M, Burt J, Helmer M, Ji J, Adkinson B, Glasser M . Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics. Neuron. 2019; 101(6):1181-1194.e13. PMC: 6447428. DOI: 10.1016/j.neuron.2019.01.017. View

4.
Glasser M, Coalson T, Bijsterbosch J, Harrison S, Harms M, Anticevic A . Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. Neuroimage. 2018; 181:692-717. PMC: 6237431. DOI: 10.1016/j.neuroimage.2018.04.076. View

5.
Singh M, Braver T, Cole M, Ching S . Estimation and validation of individualized dynamic brain models with resting state fMRI. Neuroimage. 2020; 221:117046. PMC: 7875185. DOI: 10.1016/j.neuroimage.2020.117046. View