» Articles » PMID: 38698901

Virtual Brain Twins: from Basic Neuroscience to Clinical Use

Overview
Journal Natl Sci Rev
Date 2024 May 3
PMID 38698901
Authors
Affiliations
Soon will be listed here.
Abstract

Virtual brain twins are personalized, generative and adaptive brain models based on data from an individual's brain for scientific and clinical use. After a description of the key elements of virtual brain twins, we present the standard model for personalized whole-brain network models. The personalization is accomplished using a subject's brain imaging data by three means: (1) assemble cortical and subcortical areas in the subject-specific brain space; (2) directly map connectivity into the brain models, which can be generalized to other parameters; and (3) estimate relevant parameters through model inversion, typically using probabilistic machine learning. We present the use of personalized whole-brain network models in healthy ageing and five clinical diseases: epilepsy, Alzheimer's disease, multiple sclerosis, Parkinson's disease and psychiatric disorders. Specifically, we introduce spatial masks for relevant parameters and demonstrate their use based on the physiological and pathophysiological hypotheses. Finally, we pinpoint the key challenges and future directions.

Citing Articles

Medical Digital Twin: A Review on Technical Principles and Clinical Applications.

Tortora M, Pacchiano F, Ferraciolli S, Criscuolo S, Gagliardo C, Jaber K J Clin Med. 2025; 14(2).

PMID: 39860329 PMC: 11765765. DOI: 10.3390/jcm14020324.


Modeling impairment of ionic regulation with extended Adaptive Exponential integrate-and-fire models.

Depannemaecker D, Tesler F, Desroches M, Jirsa V, Destexhe A J Comput Neurosci. 2025; 53(1):1-8.

PMID: 39847247 PMC: 11868341. DOI: 10.1007/s10827-025-00893-7.


Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach.

Ali O, Vidal A, Grova C, Benali H PLoS Comput Biol. 2025; 21(1):e1012683.

PMID: 39804928 PMC: 11730384. DOI: 10.1371/journal.pcbi.1012683.


Therapeutic dose prediction of α5-GABA receptor modulation from simulated EEG of depression severity.

Guet-McCreight A, Mazza F, Prevot T, Sibille E, Hay E PLoS Comput Biol. 2024; 20(12):e1012693.

PMID: 39729407 PMC: 11676559. DOI: 10.1371/journal.pcbi.1012693.


Augmented intelligence in precision medicine: Transforming clinical decision-making with AI/ML and/or quantitative systems pharmacology models.

Venkatapurapu S, Gibbs M, Kimko H Clin Transl Sci. 2024; 17(12):e70112.

PMID: 39673165 PMC: 11645444. DOI: 10.1111/cts.70112.


References
1.
Battaglia D, Boudou T, Hansen E, Lombardo D, Chettouf S, Daffertshofer A . Dynamic Functional Connectivity between order and randomness and its evolution across the human adult lifespan. Neuroimage. 2020; 222:117156. DOI: 10.1016/j.neuroimage.2020.117156. View

2.
Murray J, Demirtas M, Anticevic A . Biophysical Modeling of Large-Scale Brain Dynamics and Applications for Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3(9):777-787. PMC: 6537601. DOI: 10.1016/j.bpsc.2018.07.004. View

3.
Kamel Boulos M, Zhang P . Digital Twins: From Personalised Medicine to Precision Public Health. J Pers Med. 2021; 11(8). PMC: 8401029. DOI: 10.3390/jpm11080745. View

4.
Fjell A, Sneve M, Grydeland H, Storsve A, Walhovd K . The Disconnected Brain and Executive Function Decline in Aging. Cereb Cortex. 2016; 27(3):2303-2317. DOI: 10.1093/cercor/bhw082. View

5.
Bullmore E, Sporns O . The economy of brain network organization. Nat Rev Neurosci. 2012; 13(5):336-49. DOI: 10.1038/nrn3214. View