» Articles » PMID: 36929077

Statistical Analysis of Multiplex Immunofluorescence and Immunohistochemistry Imaging Data

Overview
Specialty Molecular Biology
Date 2023 Mar 17
PMID 36929077
Authors
Affiliations
Soon will be listed here.
Abstract

Advances in multiplexed single-cell immunofluorescence (mIF) and multiplex immunohistochemistry (mIHC) imaging technologies have enabled the analysis of cell-to-cell spatial relationships that promise to revolutionize our understanding of tissue-based diseases and autoimmune disorders. Multiplex images are collected as multichannel TIFF files; then denoised, segmented to identify cells and nuclei, normalized across slides with protein markers to correct for batch effects, and phenotyped; and then tissue composition and spatial context at the cellular level are analyzed. This chapter discusses methods and software infrastructure for image processing and statistical analysis of mIF/mIHC data.

Citing Articles

Benchmarking Spatial Co-Localization Methods for Single-Cell Multiplex Imaging Data with Applications to High-Grade Serous Ovarian and Triple Negative Breast Cancer.

Soupir A, Gadiyar I, Helm B, Harris C, Vandekar S, Peres L Stat Data Sci Imaging. 2025; 2(1).

PMID: 40051984 PMC: 11883755. DOI: 10.1080/29979676.2024.2437947.


Detecting Clinically Relevant Topological Structures in Multiplexed Spatial Proteomics Imaging Using TopKAT.

Samorodnitsky S, Campbell K, Little A, Ling W, Zhao N, Chen Y bioRxiv. 2025; .

PMID: 39764056 PMC: 11702633. DOI: 10.1101/2024.12.18.628976.


mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data.

Wrobel J, Soupir A, Hayes M, Peres L, Vu T, Leroux A Bioinform Adv. 2024; 4(1):vbae155.

PMID: 39552929 PMC: 11568348. DOI: 10.1093/bioadv/vbae155.


Statistical analysis of multiple regions-of-interest in multiplexed spatial proteomics data.

Samorodnitsky S, Wu M Brief Bioinform. 2024; 25(6).

PMID: 39428129 PMC: 11491162. DOI: 10.1093/bib/bbae522.


A Spatial Omnibus Test (SPOT) for Spatial Proteomic Data.

Samorodnitsky S, Campbell K, Ribas A, Wu M Bioinformatics. 2024; 40(7).

PMID: 38950184 PMC: 11257711. DOI: 10.1093/bioinformatics/btae425.


References
1.
Bendall S, Nolan G, Roederer M, Chattopadhyay P . A deep profiler's guide to cytometry. Trends Immunol. 2012; 33(7):323-32. PMC: 3383392. DOI: 10.1016/j.it.2012.02.010. View

2.
Young Y, Bolt A, Ahn R, Mann K . Analyzing the Tumor Microenvironment by Flow Cytometry. Methods Mol Biol. 2016; 1458:95-110. DOI: 10.1007/978-1-4939-3801-8_8. View

3.
Hedvat C . Digital microscopy: past, present, and future. Arch Pathol Lab Med. 2010; 134(11):1666-70. DOI: 10.5858/2009-0579-RAR1.1. View

4.
Angelo M, Bendall S, Finck R, Hale M, Hitzman C, Borowsky A . Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014; 20(4):436-42. PMC: 4110905. DOI: 10.1038/nm.3488. View

5.
Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S . A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell. 2018; 174(6):1373-1387.e19. PMC: 6132072. DOI: 10.1016/j.cell.2018.08.039. View