» Articles » PMID: 36914797

Heterochromatin Rewiring and Domain Disruption-mediated Chromatin Compaction During Erythropoiesis

Overview
Date 2023 Mar 14
PMID 36914797
Authors
Affiliations
Soon will be listed here.
Abstract

Mammalian erythropoiesis involves progressive chromatin compaction and subsequent enucleation in terminal differentiation, but the mechanisms underlying the three-dimensional chromatin reorganization remain obscure. Here, we systematically analyze the higher-order chromatin in purified populations of primary human erythroblasts. Our results reveal that heterochromatin regions undergo substantial compression, with H3K9me3 markers relocalizing to the nuclear periphery and forming a significant number of long-range interactions, and that ~58% of the topologically associating domain (TAD) boundaries are disrupted, while certain TADs enriched for markers of the active transcription state and erythroid master regulators, GATA1 and KLF1, are selectively maintained during terminal erythropoiesis. Finally, we demonstrate that GATA1 is involved in safeguarding selected essential chromatin domains during terminal erythropoiesis. Our study therefore delineates the molecular characteristics of a development-driven chromatin compaction process, which reveals transcription competence as a key indicator of the selected domain maintenance to ensure appropriate gene expression during the extreme compaction of chromatin.

Citing Articles

Reconstruction of diploid higher-order human 3D genome interactions from noisy Pore-C data using Dip3D.

Chen Y, Lin Z, Wang S, Wu B, Niu L, Zhong J Nat Struct Mol Biol. 2025; .

PMID: 40038455 DOI: 10.1038/s41594-025-01512-w.


CTCF is selectively required for maintaining chromatin accessibility and gene expression in human erythropoiesis.

Yang X, Cheng L, Xin Y, Zhang J, Chen X, Xu J Genome Biol. 2025; 26(1):44.

PMID: 40022213 PMC: 11869676. DOI: 10.1186/s13059-025-03510-z.


New insights into the mechanisms of red blood cell enucleation: From basics to clinical applications.

Zhuo Q, Zhang Z, Fang X EJHaem. 2024; 5(6):1301-1311.

PMID: 39691252 PMC: 11647694. DOI: 10.1002/jha2.1051.


Enhancing terminal erythroid differentiation in human embryonic stem cells through TRIB3 overexpression.

Wang X, Cui T, Yan H, Zhao L, Zang R, Li H Heliyon. 2024; 10(18):e37463.

PMID: 39309892 PMC: 11415673. DOI: 10.1016/j.heliyon.2024.e37463.


PROTAC-mediated vimentin degradation promotes terminal erythroid differentiation of pluripotent stem cells.

Yan H, Zang R, Cui T, Liu Y, Zhang B, Zhao L Stem Cell Res Ther. 2024; 15(1):310.

PMID: 39294765 PMC: 11412063. DOI: 10.1186/s13287-024-03910-1.


References
1.
Hattangadi S, Wong P, Zhang L, Flygare J, Lodish H . From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011; 118(24):6258-68. PMC: 3236116. DOI: 10.1182/blood-2011-07-356006. View

2.
Lodish H, Flygare J, Chou S . From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life. 2010; 62(7):492-6. PMC: 2893266. DOI: 10.1002/iub.322. View

3.
Ji P, Jayapal S, Lodish H . Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2. Nat Cell Biol. 2008; 10(3):314-21. DOI: 10.1038/ncb1693. View

4.
Ji P, Murata-Hori M, Lodish H . Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol. 2011; 21(7):409-15. PMC: 3134284. DOI: 10.1016/j.tcb.2011.04.003. View

5.
Keerthivasan G, Small S, Liu H, Wickrema A, Crispino J . Vesicle trafficking plays a novel role in erythroblast enucleation. Blood. 2010; 116(17):3331-40. PMC: 2995360. DOI: 10.1182/blood-2010-03-277426. View