» Articles » PMID: 22007239

Erythroblast Enucleation

Overview
Journal Stem Cells Int
Publisher Wiley
Specialty Cell Biology
Date 2011 Oct 19
PMID 22007239
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.

Citing Articles

Microenvironmental dynamics in steady-state and stress erythropoiesis.

Yang C, Suda T Blood Sci. 2025; 7(1):e00219.

PMID: 39949502 PMC: 11822345. DOI: 10.1097/BS9.0000000000000219.


Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation.

Tkachenko A, Havranek O Apoptosis. 2025; .

PMID: 39924584 DOI: 10.1007/s10495-025-02081-5.


A novel isoform of Tensin1 promotes actin filament assembly for efficient erythroblast enucleation.

Ghosh A, Coffin M, Diaz D, Barndt S, Schulz V, Gallagher P bioRxiv. 2025; .

PMID: 39763869 PMC: 11702514. DOI: 10.1101/2024.12.13.628322.


Erythroblast enucleation at a glance.

Newton L, Fowler V, Humbert P J Cell Sci. 2024; 137(19).

PMID: 39397781 PMC: 11529606. DOI: 10.1242/jcs.261673.


Progresses in overcoming the limitations of in vitro erythropoiesis using human induced pluripotent stem cells.

Ju H, Sohn Y, Nam Y, Rim Y Stem Cell Res Ther. 2024; 15(1):142.

PMID: 38750578 PMC: 11094930. DOI: 10.1186/s13287-024-03754-9.


References
1.
DAvino P, Savoian M, Glover D . Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy. J Cell Sci. 2005; 118(Pt 8):1549-58. DOI: 10.1242/jcs.02335. View

2.
Geiduschek J, Singer S . Molecular changes in the membranes of mouse erythroid cells accompanying differentiation. Cell. 1979; 16(1):149-63. DOI: 10.1016/0092-8674(79)90196-x. View

3.
Kang J, Zhou Y, Weis T, Liu H, Ulaszek J, Satgurunathan N . Osteopontin regulates actin cytoskeleton and contributes to cell proliferation in primary erythroblasts. J Biol Chem. 2008; 283(11):6997-7006. PMC: 3385928. DOI: 10.1074/jbc.M706712200. View

4.
Wickrema A, Krantz S, Winkelmann J, Bondurant M . Differentiation and erythropoietin receptor gene expression in human erythroid progenitor cells. Blood. 1992; 80(8):1940-9. View

5.
Wickrema A, Koury S, Dai C, Krantz S . Changes in cytoskeletal proteins and their mRNAs during maturation of human erythroid progenitor cells. J Cell Physiol. 1994; 160(3):417-26. DOI: 10.1002/jcp.1041600304. View