» Articles » PMID: 36914648

Aqueous Spinning of Robust, Self-healable, and Crack-resistant Hydrogel Microfibers Enabled by Hydrogen Bond Nanoconfinement

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Mar 14
PMID 36914648
Authors
Affiliations
Soon will be listed here.
Abstract

Robust damage-tolerant hydrogel fibers with high strength, crack resistance, and self-healing properties are indispensable for their long-term uses in soft machines and robots as load-bearing and actuating elements. However, current hydrogel fibers with inherent homogeneous structure are generally vulnerable to defects and cracks and thus local mechanical failure readily occurs across fiber normal. Here, inspired by spider spinning, we introduce a facile, energy-efficient aqueous pultrusion spinning process to continuously produce stiff yet extensible hydrogel microfibers at ambient conditions. The resulting microfibers are not only crack-insensitive but also rapidly heal the cracks in 30 s by moisture, owing to their structural nanoconfinement with hydrogen bond clusters embedded in an ionically complexed hygroscopic matrix. Moreover, the nanoconfined structure is highly energy-dissipating, moisture-sensitive but stable in water, leading to excellent damping and supercontraction properties. This work creates opportunities for the sustainable spinning of robust hydrogel-based fibrous materials towards diverse intelligent applications.

Citing Articles

Recent Development of Fibrous Hydrogels: Properties, Applications and Perspectives.

Luo W, Ren L, Hu B, Zhang H, Yang Z, Jin L Adv Sci (Weinh). 2024; 12(1):e2408657.

PMID: 39530645 PMC: 11714238. DOI: 10.1002/advs.202408657.


A supramolecular hydrogel leveraging hierarchical multi-strength hydrogen-bonds hinged strategy achieving a striking adhesive-mechanical balance.

Yang J, Liu W, Wang W Bioact Mater. 2024; 43:32-47.

PMID: 39318637 PMC: 11421952. DOI: 10.1016/j.bioactmat.2024.09.014.


High-Strength, Antiswelling Directional Layered PVA/MXene Hydrogel for Wearable Devices and Underwater Sensing.

Zhang S, Guo F, Gao X, Yang M, Huang X, Zhang D Adv Sci (Weinh). 2024; 11(39):e2405880.

PMID: 39162177 PMC: 11496995. DOI: 10.1002/advs.202405880.


Rapidly damping hydrogels engineered through molecular friction.

Xu Z, Lu J, Lu D, Li Y, Lei H, Chen B Nat Commun. 2024; 15(1):4895.

PMID: 38851753 PMC: 11162443. DOI: 10.1038/s41467-024-49239-4.


Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties.

Wu S, Liu Z, Gong C, Li W, Xu S, Wen R Nat Commun. 2024; 15(1):4441.

PMID: 38789409 PMC: 11126733. DOI: 10.1038/s41467-024-48745-9.


References
1.
Ling S, Kaplan D, Buehler M . Nanofibrils in nature and materials engineering. Nat Rev Mater. 2021; 3(4). PMC: 8221570. DOI: 10.1038/natrevmats.2018.16. View

2.
Yao M, Wu B, Feng X, Sun S, Wu P . A Highly Robust Ionotronic Fiber with Unprecedented Mechanomodulation of Ionic Conduction. Adv Mater. 2021; 33(42):e2103755. DOI: 10.1002/adma.202103755. View

3.
Chu C, Joseph A, Limjoco M, Yang J, Bose S, Thapa L . Chemical Tuning of Fibers Drawn from Extensible Hyaluronic Acid Networks. J Am Chem Soc. 2020; 142(46):19715-19721. PMC: 9455704. DOI: 10.1021/jacs.0c09691. View

4.
Emile O, Le Floch A, Vollrath F . Biopolymers: shape memory in spider draglines. Nature. 2006; 440(7084):621. DOI: 10.1038/440621a. View

5.
Ma C, Li B, Shao B, Wu B, Chen D, Su J . Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. Angew Chem Int Ed Engl. 2020; 59(48):21481-21487. DOI: 10.1002/anie.202009569. View