» Articles » PMID: 25885958

Toward Spinning Artificial Spider Silk

Overview
Journal Nat Chem Biol
Date 2015 Apr 18
PMID 25885958
Citations 109
Authors
Affiliations
Soon will be listed here.
Abstract

Spider silk is strong and extensible but still biodegradable and well tolerated when implanted, making it the ultimate biomaterial. Shortcomings that arise in replicating spider silk are due to the use of recombinant spider silk proteins (spidroins) that lack native domains, the use of denaturing conditions under purification and spinning and the fact that the understanding of how spiders control silk formation is incomplete. Recent progress has unraveled the molecular mechanisms of the spidroin N- and C-terminal nonrepetitive domains (NTs and CTs) and revealed the pH and ion gradients in spiders' silk glands, clarifying how spidroin solubility is maintained and how silk is formed in a fraction of a second. Protons and CO2, generated by carbonic anhydrase, affect the stability and structures of the NT and CT in different ways. These insights should allow the design of conditions and devices for the spinning of recombinant spidroins into native-like silk.

Citing Articles

The Biology of Natural Polymers Accelerates and Expands the Science of Biomacromolecules: A Focus on Structural Proteins.

Numata K Biomacromolecules. 2025; 26(3):1393-1403.

PMID: 39965779 PMC: 11898061. DOI: 10.1021/acs.biomac.4c01621.


Liquid-liquid crystalline phase separation of spider silk proteins.

Landreh M, Osterholz H, Chen G, Knight S, Rising A, Leppert A Commun Chem. 2024; 7(1):260.

PMID: 39533043 PMC: 11557605. DOI: 10.1038/s42004-024-01357-2.


Artificial Spidroin Nanogenerator-Based Articulus Wound Dressing.

Ma X, Li S, Gao B ChemistryOpen. 2024; 14(2):e202400257.

PMID: 39473315 PMC: 11808259. DOI: 10.1002/open.202400257.


Effects of Mini-Spidroin Repeat Region on the Mechanical Properties of Artificial Spider Silk Fibers.

Schmuck B, Greco G, Shilkova O, Rising A ACS Omega. 2024; 9(41):42423-42432.

PMID: 39431068 PMC: 11483375. DOI: 10.1021/acsomega.4c06031.


Coupling of Spectrin Repeat Modules for the Assembly of Nanorods and Presentation of Protein Domains.

Mezgec K, Snoj J, Ulcakar L, Ljubetic A, Znidaric M, Skarabot M ACS Nano. 2024; 18(42):28748-28763.

PMID: 39392430 PMC: 11503911. DOI: 10.1021/acsnano.4c07701.


References
1.
Blackledge T, Hayashi C . Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J Exp Biol. 2006; 209(Pt 13):2452-61. DOI: 10.1242/jeb.02275. View

2.
Holland G, Creager M, Jenkins J, Lewis R, Yarger J . Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J Am Chem Soc. 2008; 130(30):9871-7. DOI: 10.1021/ja8021208. View

3.
Schwarze S, Zwettler F, Johnson C, Neuweiler H . The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. Nat Commun. 2013; 4:2815. DOI: 10.1038/ncomms3815. View

4.
Hinman M, Lewis R . Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem. 1992; 267(27):19320-4. View

5.
Rising A, Hjalm G, Engstrom W, Johansson J . N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules. 2006; 7(11):3120-4. DOI: 10.1021/bm060693x. View