» Articles » PMID: 20228820

Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Beta-sheet Crystals in Silk

Overview
Journal Nat Mater
Date 2010 Mar 16
PMID 20228820
Citations 266
Authors
Affiliations
Soon will be listed here.
Abstract

Silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials known. The exceptional strength of silkworm and spider silks, exceeding that of steel, arises from beta-sheet nanocrystals that universally consist of highly conserved poly-(Gly-Ala) and poly-Ala domains. This is counterintuitive because the key molecular interactions in beta-sheet nanocrystals are hydrogen bonds, one of the weakest chemical bonds known. Here we report a series of large-scale molecular dynamics simulations, revealing that beta-sheet nanocrystals confined to a few nanometres achieve higher stiffness, strength and mechanical toughness than larger nanocrystals. We illustrate that through nanoconfinement, a combination of uniform shear deformation that makes most efficient use of hydrogen bonds and the emergence of dissipative molecular stick-slip deformation leads to significantly enhanced mechanical properties. Our findings explain how size effects can be exploited to create bioinspired materials with superior mechanical properties in spite of relying on mechanically inferior, weak hydrogen bonds.

Citing Articles

Charting the envelope of mechanical properties of synthetic silk fibers through predictive modeling of the drawing process.

Graham J, Subramani S, Yang X, Russell T, Zhang F, Keten S Sci Adv. 2025; 11(10):eadr3833.

PMID: 40053589 PMC: 11887809. DOI: 10.1126/sciadv.adr3833.


Multiscale toughening mechanisms in biomimetic tendon-like hydrogels.

Guo X, Dong X, Zou G, Zhang H, Zeng K, Gao H Proc Natl Acad Sci U S A. 2025; 122(9):e2424124122.

PMID: 40014567 PMC: 11892624. DOI: 10.1073/pnas.2424124122.


Comprehensive Physicochemical Characterization and in Vitro Human Cell Culture Studies of an Innovative Biocompatible and Biodegradable Silk-Derived Protein Hydrolysate, SDP-4.

Shafi H, Lora A, Aggarwal S, Infanger D, Lawrence B, Mansour H ACS Omega. 2025; 10(3):2762-2777.

PMID: 39895742 PMC: 11780451. DOI: 10.1021/acsomega.4c08514.


Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure.

Zhang S, Gao H, Zhang L, Zhu Y, Wu Y, Liu J Precis Chem. 2024; 2(12):634-643.

PMID: 39734758 PMC: 11672535. DOI: 10.1021/prechem.4c00053.


Post-spin Stretch Improves Mechanical Properties, Reduces Necking, and Reverts Effects of Aging in Biomimetic Artificial Spider Silk Fibers.

Greco G, Schmuck B, Backlund F, Reiter G, Rising A ACS Appl Polym Mater. 2024; 6(23):14342-14350.

PMID: 39697840 PMC: 11650584. DOI: 10.1021/acsapm.4c02192.


References
1.
Knowles T, Fitzpatrick A, Meehan S, Mott H, Vendruscolo M, Dobson C . Role of intermolecular forces in defining material properties of protein nanofibrils. Science. 2007; 318(5858):1900-3. DOI: 10.1126/science.1150057. View

2.
Shao Z, Vollrath F . Surprising strength of silkworm silk. Nature. 2002; 418(6899):741. DOI: 10.1038/418741a. View

3.
Brockwell D, Paci E, Zinober R, Beddard G, Olmsted P, Smith D . Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat Struct Biol. 2003; 10(9):731-7. DOI: 10.1038/nsb968. View

4.
Fossey S, NEMETHY G, Gibson K, Scheraga H . Conformational energy studies of beta-sheets of model silk fibroin peptides. I. Sheets of poly(Ala-Gly) chains. Biopolymers. 1991; 31(13):1529-41. DOI: 10.1002/bip.360311309. View

5.
Perdew , Burke , Ernzerhof . Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868. DOI: 10.1103/PhysRevLett.77.3865. View