» Articles » PMID: 36823556

Genome-wide Mapping of GlnR-binding Sites Reveals the Global Regulatory Role of GlnR in Controlling the Metabolism of Nitrogen and Carbon in Paenibacillus Polymyxa WLY78

Overview
Journal BMC Genomics
Publisher Biomed Central
Specialty Genetics
Date 2023 Feb 24
PMID 36823556
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Paenibacillus polymyxa WLY78 is a Gram-positive, endospore-forming and N-fixing bacterium. Our previous study has demonstrated that GlnR acts as both an activator and a repressor to regulate the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) according to nitrogen availability, which is achieved by binding to the two GlnR-binding sites located in the nif promoter region. However, further study on the GlnR-mediated global regulation in this bacterium is still needed.

Results: In this study, global identification of the genes directly under GlnR control is determined by using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assays (EMSA). Our results reveal that GlnR directly regulates the transcription of 17 genes/operons, including a nif operon, 14 nitrogen metabolism genes/operons (glnRA, amtBglnK, glnA1, glnK1, glnQHMP, nasA, nasD1, nasD2EF, gcvH, ansZ, pucR, oppABC, appABCDF and dppABC) and 2 carbon metabolism genes (ldh3 and maeA1). Except for the glnRA and nif operon, the other 15 genes/operons are newly identified targets of GlnR. Furthermore, genome-wide transcription analyses reveal that GlnR not only directly regulates the expression of these 17 genes/operons, but also indirectly controls the expression of some other genes/operons involved in nitrogen fixation and the metabolisms of nitrogen and carbon.

Conclusion: This study provides a GlnR-mediated regulation network of nitrogen fixation and the metabolisms of nitrogen and carbon.

Citing Articles

Nitrogen-Fixing and : Two Novel Species from Plant Rhizospheres.

Zhang W, Gao M, Hu R, Shang Y, Liu M, Lan P Microorganisms. 2025; 12(12.

PMID: 39770764 PMC: 11676665. DOI: 10.3390/microorganisms12122561.


Research progress on GlnR-mediated regulation in Actinomycetes.

Gao B, Li G, Gu D, Wang J Front Microbiol. 2023; 14:1282523.

PMID: 38075861 PMC: 10704036. DOI: 10.3389/fmicb.2023.1282523.


Glutamine synthetase and GlnR regulate nitrogen metabolism in WLY78.

Zhao X, Song Y, Wang T, Hua C, Hu R, Shang Y Appl Environ Microbiol. 2023; 89(9):e0013923.

PMID: 37668407 PMC: 10537745. DOI: 10.1128/aem.00139-23.

References
1.
Fisher S, Wray Jr L . Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci U S A. 2008; 105(3):1014-9. PMC: 2242682. DOI: 10.1073/pnas.0709949105. View

2.
FISHER S . Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence!. Mol Microbiol. 1999; 32(2):223-32. DOI: 10.1046/j.1365-2958.1999.01333.x. View

3.
Wray Jr L, Zalieckas J, FISHER S . Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA. Cell. 2001; 107(4):427-35. DOI: 10.1016/s0092-8674(01)00572-4. View

4.
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M . KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2022; 51(D1):D587-D592. PMC: 9825424. DOI: 10.1093/nar/gkac963. View

5.
Schreier H, Brown S, Hirschi K, Nomellini J, Sonenshein A . Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. J Mol Biol. 1989; 210(1):51-63. DOI: 10.1016/0022-2836(89)90290-8. View