» Articles » PMID: 36778047

Type 1 Diabetes Risk Genes Mediate Pancreatic Beta Cell Survival in Response to Proinflammatory Cytokines

Abstract

We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-βH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with , which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.

Citing Articles

Single-cell multiome and spatial profiling reveals pancreas cell type-specific gene regulatory programs driving type 1 diabetes progression.

Melton R, Jimenez S, Elison W, Tucciarone L, Howell A, Wang G bioRxiv. 2025; .

PMID: 40027657 PMC: 11870426. DOI: 10.1101/2025.02.13.637721.


Revealing the biological features of the axolotl pancreas as a new research model.

Ma H, Peng G, Hu Y, Lu B, Zheng Y, Wu Y Front Cell Dev Biol. 2025; 13:1531903.

PMID: 39958891 PMC: 11825805. DOI: 10.3389/fcell.2025.1531903.


DOC2b enrichment mitigates proinflammatory cytokine-induced CXCL10 expression by attenuating IKKβ and STAT-1 signaling in human islets.

Bhowmick D, Ahn M, Bhattacharya S, Aslamy A, Thurmond D Metabolism. 2025; 164:156132.

PMID: 39805534 PMC: 11798586. DOI: 10.1016/j.metabol.2025.156132.


Enhanced dynorphin expression and secretion in pancreatic beta-cells under hyperglycemic conditions.

Movahed M, Louzada R, Blandino-Rosano M Mol Metab. 2024; 92:102088.

PMID: 39736444 PMC: 11846442. DOI: 10.1016/j.molmet.2024.102088.


Genetic Discovery and Risk Prediction for Type 1 Diabetes in Individuals Without High-Risk HLA-DR3/DR4 Haplotypes.

McGrail C, Chiou J, Egamal R, Elgamal R, Luckett A, Oram R Diabetes Care. 2024; 48(2):202-211.

PMID: 39626097 PMC: 11770152. DOI: 10.2337/dc24-1251.


References
1.
Padgett L, Broniowska K, Hansen P, Corbett J, Tse H . The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci. 2013; 1281:16-35. PMC: 3715103. DOI: 10.1111/j.1749-6632.2012.06826.x. View

2.
Love M, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. PMC: 4302049. DOI: 10.1186/s13059-014-0550-8. View

3.
Gurzov E, Barthson J, Marhfour I, Ortis F, Naamane N, Igoillo-Esteve M . Pancreatic β-cells activate a JunB/ATF3-dependent survival pathway during inflammation. Oncogene. 2011; 31(13):1723-32. DOI: 10.1038/onc.2011.353. View

4.
Juric I, Yu M, Abnousi A, Raviram R, Fang R, Zhao Y . MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput Biol. 2019; 15(4):e1006982. PMC: 6483256. DOI: 10.1371/journal.pcbi.1006982. View

5.
Rosselot C, Baumel-Alterzon S, Li Y, Brill G, Lambertini L, Katz L . The many lives of Myc in the pancreatic β-cell. J Biol Chem. 2020; 296:100122. PMC: 7949031. DOI: 10.1074/jbc.REV120.011149. View