» Articles » PMID: 36695570

Data-Driven and Machine Learning-Based Framework for Image-Guided Single-Cell Mass Spectrometry

Overview
Journal J Proteome Res
Specialty Biochemistry
Date 2023 Jan 25
PMID 36695570
Authors
Affiliations
Soon will be listed here.
Abstract

Improved throughput of analysis and lowered limits of detection have allowed single-cell chemical analysis to go beyond the detection of a few molecules in such volume-limited samples, enabling researchers to characterize different functional states of individual cells. Image-guided single-cell mass spectrometry leverages optical and fluorescence microscopy in the high-throughput analysis of cellular and subcellular targets. In this work, we propose DATSIGMA (ta-driven ools for ingle-cell analysis using mage-uided ss spectrometry), a workflow based on data-driven and machine learning approaches for feature extraction and enhanced interpretability of complex single-cell mass spectrometry data. Here, we implemented our toolset with user-friendly programs and tested it on multiple experimental data sets that cover a wide range of biological applications, including classifying various brain cell types. Because it is open-source, it offers a high level of customization and can be easily adapted to other types of single-cell mass spectrometry data.

Citing Articles

Mass-Guided Single-Cell MALDI Imaging of Low-Mass Metabolites Reveals Cellular Activation Markers.

Cairns J, Huber J, Lewen A, Jung J, Maurer S, Bausbacher T Adv Sci (Weinh). 2024; 12(5):e2410506.

PMID: 39665230 PMC: 11791930. DOI: 10.1002/advs.202410506.


Single Cell mass spectrometry: Towards quantification of small molecules in individual cells.

Lan Y, Zou Z, Yang Z Trends Analyt Chem. 2024; 174.

PMID: 39391010 PMC: 11465888. DOI: 10.1016/j.trac.2024.117657.


Recent Developments in Machine Learning for Mass Spectrometry.

Beck A, Muhoberac M, Randolph C, Beveridge C, Wijewardhane P, Kenttamaa H ACS Meas Sci Au. 2024; 4(3):233-246.

PMID: 38910862 PMC: 11191731. DOI: 10.1021/acsmeasuresciau.3c00060.


Single Cell Analysis of Proteoforms.

Su P, Hollas M, Butun F, Kanchustambham V, Rubakhin S, Ramani N J Proteome Res. 2024; 23(6):1883-1893.

PMID: 38497708 PMC: 11406863. DOI: 10.1021/acs.jproteome.4c00075.

References
1.
Comi T, Neumann E, Do T, Sweedler J . microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling. J Am Soc Mass Spectrom. 2017; 28(9):1919-1928. PMC: 5711600. DOI: 10.1007/s13361-017-1704-1. View

2.
Spraggins J, Djambazova K, Rivera E, Migas L, Neumann E, Fuetterer A . High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry. Anal Chem. 2019; 91(22):14552-14560. PMC: 7382025. DOI: 10.1021/acs.analchem.9b03612. View

3.
Peng H, Xie P, Liu L, Kuang X, Wang Y, Qu L . Morphological diversity of single neurons in molecularly defined cell types. Nature. 2021; 598(7879):174-181. PMC: 8494643. DOI: 10.1038/s41586-021-03941-1. View

4.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View

5.
Lake B, Ai R, Kaeser G, Salathia N, Yung Y, Liu R . Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016; 352(6293):1586-90. PMC: 5038589. DOI: 10.1126/science.aaf1204. View