» Articles » PMID: 36685731

Dynamic Degradation Patterns of Porous Polycaprolactone/β-tricalcium Phosphate Composites Orchestrate Macrophage Responses and Immunoregulatory Bone Regeneration

Overview
Journal Bioact Mater
Date 2023 Jan 23
PMID 36685731
Authors
Affiliations
Soon will be listed here.
Abstract

Biodegradable polycaprolactone/β-tricalcium phosphate (PT) composites are desirable candidates for bone tissue engineering applications. A higher β-tricalcium phosphate (TCP) ceramic content improves the mechanical, hydrophilic and osteogenic properties of PT scaffolds . Using a dynamic degradation reactor, we established a steady degradation model to investigate the changes in the physio-chemical and biological properties of PT scaffolds during degradation.PT46 and PT37 scaffolds underwent degradation more rapidly than PT scaffolds with lower TCP contents. studies revealed the rapid degradation of PT (PT46 and PT37) scaffolds disturbed macrophage responses and lead to bone healing failure. Macrophage co-culture assays and a subcutaneous implantation model indicated that the scaffold degradation process dynamically affected macrophage responses, especially polarization. RNA-Seq analysis indicated phagocytosis of the degradation products of PT37 scaffolds induces oxidative stress and inflammatory M1 polarization in macrophages. Overall, this study reveals that the dynamic patterns of biodegradation of degradable bone scaffolds highly orchestrate immune responses and thus determine the success of bone regeneration. Therefore, through evaluation of the biological effects of biomaterials during the entire process of degradation on immune responses and bone regeneration are necessary in order to develop more promising biomaterials for bone regeneration.

Citing Articles

Construction of a 3D Degradable PLLA/β-TCP/CS Scaffold for Establishing an Induced Membrane Inspired by the Modified Single-Stage Masquelet Technique.

Cen C, Zhang Y, Cao Y, Hu C, Tang L, Liu C ACS Biomater Sci Eng. 2025; 11(3):1629-1645.

PMID: 39943835 PMC: 11900768. DOI: 10.1021/acsbiomaterials.4c01849.


Mechanically robust surface-degradable implant from fiber silk composites demonstrates regenerative potential.

Tian W, Liu Y, Han B, Cheng F, Yang K, Hu W Bioact Mater. 2025; 45():584-598.

PMID: 39811246 PMC: 11732114. DOI: 10.1016/j.bioactmat.2024.11.036.


Research progresses on mitochondrial-targeted biomaterials for bone defect repair.

Wang S, Liu J, Zhou L, Xu H, Zhang D, Zhang X Regen Biomater. 2024; 11:rbae082.

PMID: 39055307 PMC: 11272180. DOI: 10.1093/rb/rbae082.


Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation.

Quek J, Vizetto-Duarte C, Teoh S, Choo Y J Funct Biomater. 2024; 15(6).

PMID: 38921519 PMC: 11205181. DOI: 10.3390/jfb15060145.


The Structural, Thermal and Morphological Characterization of Polylactic Acid/Β-Tricalcium Phosphate (PLA/Β-TCP) Composites upon Immersion in SBF: A Comprehensive Analysis.

Ftiti S, Cifuentes S, Guidara A, Rams J, Tounsi H, Fernandez-Blazquez J Polymers (Basel). 2024; 16(5).

PMID: 38475402 PMC: 10934208. DOI: 10.3390/polym16050719.


References
1.
Han H, Jun I, Seok H, Lee K, Lee K, Witte F . Biodegradable Magnesium Alloys Promote Angio-Osteogenesis to Enhance Bone Repair. Adv Sci (Weinh). 2020; 7(15):2000800. PMC: 7404158. DOI: 10.1002/advs.202000800. View

2.
Lu L, Zhang Q, Wootton D, Chiou R, Li D, Lu B . Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method. J Mater Sci Mater Med. 2012; 23(9):2217-26. DOI: 10.1007/s10856-012-4695-2. View

3.
Doyle H, Lohfeld S, McHugh P . Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials. Med Eng Phys. 2015; 37(8):767-76. DOI: 10.1016/j.medengphy.2015.05.009. View

4.
Li L, Li Q, Gui L, Deng Y, Wang L, Jiao J . Sequential gastrodin release PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis. Bioact Mater. 2022; 19:24-37. PMC: 8980440. DOI: 10.1016/j.bioactmat.2022.03.037. View

5.
Bergsma J, Rozema F, Bos R, BOERING G, de Bruijn W, Pennings A . In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles. Biomaterials. 1995; 16(4):267-74. DOI: 10.1016/0142-9612(95)93253-a. View