» Articles » PMID: 36617187

Benchmarking Differential Abundance Analysis Methods for Correlated Microbiome Sequencing Data

Overview
Journal Brief Bioinform
Specialty Biology
Date 2023 Jan 8
PMID 36617187
Authors
Affiliations
Soon will be listed here.
Abstract

Differential abundance analysis (DAA) is one central statistical task in microbiome data analysis. A robust and powerful DAA tool can help identify highly confident microbial candidates for further biological validation. Current microbiome studies frequently generate correlated samples from different microbiome sampling schemes such as spatial and temporal sampling. In the past decade, a number of DAA tools for correlated microbiome data (DAA-c) have been proposed. Disturbingly, different DAA-c tools could sometimes produce quite discordant results. To recommend the best practice to the field, we performed the first comprehensive evaluation of existing DAA-c tools using real data-based simulations. Overall, the linear model-based methods LinDA, MaAsLin2 and LDM are more robust than methods based on generalized linear models. The LinDA method is the only method that maintains reasonable performance in the presence of strong compositional effects.

Citing Articles

ZINQ-L: a zero-inflated quantile approach for differential abundance analysis of longitudinal microbiome data.

Li S, Li R, Lee J, Zhao N, Ling W Front Genet. 2025; 15:1494401.

PMID: 39944355 PMC: 11814158. DOI: 10.3389/fgene.2024.1494401.


A realistic benchmark for differential abundance testing and confounder adjustment in human microbiome studies.

Wirbel J, Essex M, Forslund S, Zeller G Genome Biol. 2024; 25(1):247.

PMID: 39322959 PMC: 11423519. DOI: 10.1186/s13059-024-03390-9.


The Beneficial Effects of subsp. DSM 27449 in a Letrozole-Induced Polycystic Ovary Syndrome Rat Model.

Lee Y, Cheng S, Lin Y, Wu C, Tsai Y Int J Mol Sci. 2024; 25(16).

PMID: 39201391 PMC: 11354393. DOI: 10.3390/ijms25168706.


Next-generation data filtering in the genomics era.

Hemstrom W, Grummer J, Luikart G, Christie M Nat Rev Genet. 2024; 25(11):750-767.

PMID: 38877133 DOI: 10.1038/s41576-024-00738-6.


Environmental bacteria increase population growth of hydra at low temperature.

Miklos M, Cseri K, Laczko L, Kardos G, Fraune S, Tokolyi J Front Microbiol. 2023; 14:1294771.

PMID: 38088971 PMC: 10715282. DOI: 10.3389/fmicb.2023.1294771.


References
1.
Kuczynski J, Lauber C, Walters W, Parfrey L, Clemente J, Gevers D . Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011; 13(1):47-58. PMC: 5119550. DOI: 10.1038/nrg3129. View

2.
. Household paired design reduces variance and increases power in multi-city gut microbiome study in multiple sclerosis. Mult Scler. 2020; :1352458520924594. PMC: 7968892. DOI: 10.1177/1352458520924594. View

3.
Duncan K, Carey-Ewend K, Vaishnava S . Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes. 2021; 13(1):1874815. PMC: 8253138. DOI: 10.1080/19490976.2021.1874815. View

4.
Edwinson A, Yang L, Peters S, Hanning N, Jeraldo P, Jagtap P . Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat Microbiol. 2022; 7(5):680-694. PMC: 9081267. DOI: 10.1038/s41564-022-01103-1. View

5.
Robinson M, Oshlack A . A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):R25. PMC: 2864565. DOI: 10.1186/gb-2010-11-3-r25. View