» Articles » PMID: 36456871

Matrix Viscoelasticity Controls Spatiotemporal Tissue Organization

Abstract

Biomolecular and physical cues of the extracellular matrix environment regulate collective cell dynamics and tissue patterning. Nonetheless, how the viscoelastic properties of the matrix regulate collective cell spatial and temporal organization is not fully understood. Here we show that the passive viscoelastic properties of the matrix encapsulating a spheroidal tissue of breast epithelial cells guide tissue proliferation in space and in time. Matrix viscoelasticity prompts symmetry breaking of the spheroid, leading to the formation of invading finger-like protrusions, YAP nuclear translocation and epithelial-to-mesenchymal transition both in vitro and in vivo in a Arp2/3-complex-dependent manner. Computational modelling of these observations allows us to establish a phase diagram relating morphological stability with matrix viscoelasticity, tissue viscosity, cell motility and cell division rate, which is experimentally validated by biochemical assays and in vitro experiments with an intestinal organoid. Altogether, this work highlights the role of stress relaxation mechanisms in tissue growth dynamics, a fundamental process in morphogenesis and oncogenesis.

Citing Articles

Effects of hydrogel stiffness and viscoelasticity on organoid culture: a comprehensive review.

Lai W, Geliang H, Bin X, Wang W Mol Med. 2025; 31(1):83.

PMID: 40033190 PMC: 11877758. DOI: 10.1186/s10020-025-01131-7.


Biointegration of soft tissue-inspired hydrogels on the chorioallantoic membrane: An experimental characterization.

Kainz M, Polz M, Ziesel D, Nowakowska M, Ucal M, Kienesberger S Mater Today Bio. 2025; 31:101508.

PMID: 39990742 PMC: 11846936. DOI: 10.1016/j.mtbio.2025.101508.


Design and Fabrication of Viscoelastic Hydrogels as Extracellular Matrix Mimicry for Cell Engineering.

Li Z, Li T, Yang H, Ding M, Chen L, Yu S Chem Bio Eng. 2025; 1(11):916-933.

PMID: 39975568 PMC: 11835267. DOI: 10.1021/cbe.4c00129.


Matrix mechano-sensing at the invasive front induces a cytoskeletal and transcriptional memory supporting metastasis.

Maiques O, Sallan M, Laddach R, Pandya P, Varela A, Crosas-Molist E Nat Commun. 2025; 16(1):1394.

PMID: 39952917 PMC: 11829002. DOI: 10.1038/s41467-025-56299-7.


Visible light-responsive hydrogels for cellular dynamics and spatiotemporal viscoelastic regulation.

Lu Y, Chen C, Li H, Zhao P, Zhao Y, Li B Nat Commun. 2025; 16(1):1365.

PMID: 39904989 PMC: 11794891. DOI: 10.1038/s41467-024-54880-0.


References
1.
Chan C, Costanzo M, Ruiz-Herrero T, Monke G, Petrie R, Bergert M . Hydraulic control of mammalian embryo size and cell fate. Nature. 2019; 571(7763):112-116. DOI: 10.1038/s41586-019-1309-x. View

2.
Rowley J, Madlambayan G, Mooney D . Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999; 20(1):45-53. DOI: 10.1016/s0142-9612(98)00107-0. View

3.
Wang C, Tong X, Yang F . Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol Pharm. 2014; 11(7):2115-25. DOI: 10.1021/mp5000828. View

4.
Lee H, Alisafaei F, Adebawale K, Chang J, Shenoy V, Chaudhuri O . The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci Adv. 2021; 7(2). PMC: 7793582. DOI: 10.1126/sciadv.abd4058. View

5.
Chaudhuri O, Cooper-White J, Janmey P, Mooney D, Shenoy V . Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020; 584(7822):535-546. PMC: 7676152. DOI: 10.1038/s41586-020-2612-2. View