» Articles » PMID: 36302649

Miro GTPase Domains Regulate the Assembly of the Mitochondrial Motor-adaptor Complex

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial transport relies on a motor-adaptor complex containing Miro1, a mitochondrial outer membrane protein with two GTPase domains, and TRAK1/2, kinesin-1, and dynein. Using a peroxisome-directed Miro1, we quantified the ability of GTPase mutations to influence the peroxisomal recruitment of complex components. Miro1 whose N-GTPase is locked in the GDP state does not recruit TRAK1/2, kinesin, or P135 to peroxisomes, whereas the GTP state does. Similarly, the expression of the MiroGAP VopE dislodges TRAK1 from mitochondria. Miro1 C-GTPase mutations have little influence on complex recruitment. Although Miro2 is thought to support mitochondrial motility, peroxisome-directed Miro2 did not recruit the other complex components regardless of the state of its GTPase domains. Neurons expressing peroxisomal Miro1 with the GTP-state form of the N-GTPase had markedly increased peroxisomal transport to growth cones, whereas the GDP-state caused their retention in the soma. Thus, the N-GTPase domain of Miro1 is critical for regulating Miro1's interaction with the other components of the motor-adaptor complex and thereby for regulating mitochondrial motility.

Citing Articles

MFN2 coordinates mitochondria motility with α-tubulin acetylation and this regulation is disrupted in CMT2A.

Kumar A, Larrea D, Pero M, Infante P, Conenna M, Shin G iScience. 2024; 27(6):109994.

PMID: 38883841 PMC: 11177149. DOI: 10.1016/j.isci.2024.109994.


The peroxisome: an update on mysteries 3.0.

Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M Histochem Cell Biol. 2024; 161(2):99-132.

PMID: 38244103 PMC: 10822820. DOI: 10.1007/s00418-023-02259-5.


Interaction between the mitochondrial adaptor MIRO and the motor adaptor TRAK.

Baltrusaitis E, Ravitch E, Fenton A, Perez T, Holzbaur E, Dominguez R J Biol Chem. 2023; 299(12):105441.

PMID: 37949220 PMC: 10746525. DOI: 10.1016/j.jbc.2023.105441.


Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria.

Zaninello M, Bean C Biomolecules. 2023; 13(6).

PMID: 37371518 PMC: 10296243. DOI: 10.3390/biom13060938.


MIRO-1 interacts with VDAC-1 to regulate mitochondrial membrane potential in Caenorhabditis elegans.

Ren X, Zhou H, Sun Y, Fu H, Ran Y, Yang B EMBO Rep. 2023; 24(8):e56297.

PMID: 37306041 PMC: 10398670. DOI: 10.15252/embr.202256297.

References
1.
Hurd D, Saxton W . Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics. 1996; 144(3):1075-85. PMC: 1207603. DOI: 10.1093/genetics/144.3.1075. View

2.
Fransson A, Ruusala A, Aspenstrom P . Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem. 2002; 278(8):6495-502. DOI: 10.1074/jbc.M208609200. View

3.
Babic M, Russo G, Wellington A, Sangston R, Gonzalez M, Zinsmaier K . Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites. J Neurosci. 2015; 35(14):5754-71. PMC: 4388930. DOI: 10.1523/JNEUROSCI.1035-14.2015. View

4.
Glater E, Megeath L, Stowers R, Schwarz T . Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol. 2006; 173(4):545-57. PMC: 2063864. DOI: 10.1083/jcb.200601067. View

5.
Modi S, Lopez-Domenech G, Halff E, Covill-Cooke C, Ivankovic D, Melandri D . Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun. 2019; 10(1):4399. PMC: 6764964. DOI: 10.1038/s41467-019-12382-4. View