» Articles » PMID: 36280685

Ribosome-mediated Biosynthesis of Pyridazinone Oligomers in Vitro

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Oct 24
PMID 36280685
Authors
Affiliations
Soon will be listed here.
Abstract

The ribosome is a macromolecular machine that catalyzes the sequence-defined polymerization of L-α-amino acids into polypeptides. The catalysis of peptide bond formation between amino acid substrates is based on entropy trapping, wherein the adjacency of transfer RNA (tRNA)-coupled acyl bonds in the P-site and the α-amino groups in the A-site aligns the substrates for coupling. The plasticity of this catalytic mechanism has been observed in both remnants of the evolution of the genetic code and modern efforts to reprogram the genetic code (e.g., ribosomal incorporation of non-canonical amino acids, ribosomal ester formation). However, the limits of ribosome-mediated polymerization are underexplored. Here, rather than peptide bonds, we demonstrate ribosome-mediated polymerization of pyridazinone bonds via a cyclocondensation reaction between activated γ-keto and α-hydrazino ester monomers. In addition, we demonstrate the ribosome-catalyzed synthesis of peptide-hybrid oligomers composed of multiple sequence-defined alternating pyridazinone linkages. Our results highlight the plasticity of the ribosome's ancient bond-formation mechanism, expand the range of non-canonical polymeric backbones that can be synthesized by the ribosome, and open the door to new applications in synthetic biology.

Citing Articles

Direct and quantitative analysis of tRNA acylation using intact tRNA liquid chromatography-mass spectrometry.

Fricke R, Knudson I, Swenson C, Smaga S, Schepartz A Nat Protoc. 2025; .

PMID: 39762443 DOI: 10.1038/s41596-024-01086-9.


Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics.

Park H, Jin H, Kim D, Lee J Int J Mol Sci. 2024; 25(16).

PMID: 39201795 PMC: 11354240. DOI: 10.3390/ijms25169109.


Tuning tRNAs for improved translation.

Weiss J, Decker J, Bolano A, Krahn N Front Genet. 2024; 15:1436860.

PMID: 38983271 PMC: 11231383. DOI: 10.3389/fgene.2024.1436860.


A Translation-Independent Directed Evolution Strategy to Engineer Aminoacyl-tRNA Synthetases.

Soni C, Prywes N, Hall M, Nair M, Savage D, Schepartz A ACS Cent Sci. 2024; 10(6):1211-1220.

PMID: 38947215 PMC: 11212135. DOI: 10.1021/acscentsci.3c01557.


Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.

Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H Chem Rev. 2024; 124(10):6444-6500.

PMID: 38688034 PMC: 11122139. DOI: 10.1021/acs.chemrev.3c00894.


References
1.
Lee J, Torres R, Kim D, Byrom M, Ellington A, Jewett M . Ribosomal incorporation of cyclic β-amino acids into peptides using in vitro translation. Chem Commun (Camb). 2020; 56(42):5597-5600. DOI: 10.1039/d0cc02121k. View

2.
Hong S, Ntai I, Haimovich A, Kelleher N, Isaacs F, Jewett M . Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth Biol. 2013; 3(6):398-409. PMC: 4065633. DOI: 10.1021/sb400140t. View

3.
Kofman C, Lee J, Jewett M . Engineering molecular translation systems. Cell Syst. 2021; 12(6):593-607. DOI: 10.1016/j.cels.2021.04.001. View

4.
Rodnina M, Beringer M, Wintermeyer W . How ribosomes make peptide bonds. Trends Biochem Sci. 2006; 32(1):20-6. DOI: 10.1016/j.tibs.2006.11.007. View

5.
Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, LaRossa R . Quality control despite mistranslation caused by an ambiguous genetic code. Proc Natl Acad Sci U S A. 2008; 105(43):16502-7. PMC: 2575449. DOI: 10.1073/pnas.0809179105. View