» Articles » PMID: 21637198

Flexizymes for Genetic Code Reprogramming

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2011 Jun 4
PMID 21637198
Citations 189
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic code reprogramming is a method for the reassignment of arbitrary codons from proteinogenic amino acids to nonproteinogenic ones; thus, specific sequences of nonstandard peptides can be ribosomally expressed according to their mRNA templates. Here we describe a protocol that facilitates genetic code reprogramming using flexizymes integrated with a custom-made in vitro translation apparatus, referred to as the flexible in vitro translation (FIT) system. Flexizymes are flexible tRNA acylation ribozymes that enable the preparation of a diverse array of nonproteinogenic acyl-tRNAs. These acyl-tRNAs read vacant codons created in the FIT system, yielding the desired nonstandard peptides with diverse exotic structures, such as N-methyl amino acids, D-amino acids and physiologically stable macrocyclic scaffolds. The facility of the protocol allows a wide variety of applications in the synthesis of new classes of nonstandard peptides with biological functions. Preparation of flexizymes and tRNA used for genetic code reprogramming, optimization of flexizyme reaction conditions and expression of nonstandard peptides using the FIT system can be completed by one person in approximately 1 week. However, once the flexizymes and tRNAs are in hand and reaction conditions are fixed, synthesis of acyl-tRNAs and peptide expression is generally completed in 1 d, and alteration of a peptide sequence can be achieved by simply changing the corresponding mRNA template.

Citing Articles

Discovery of selective low molecular weight interleukin-36 receptor antagonists by encoded library technologies.

Velcicky J, Cremosnik G, Scheufler C, Meier P, Wirth E, Felber R Nat Commun. 2025; 16(1):1669.

PMID: 39955284 PMC: 11829961. DOI: 10.1038/s41467-025-56601-7.


Beyond , Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein.

Casteleijn M, Abendroth U, Zemella A, Walter R, Rashmi R, Haag R Chem Rev. 2025; 125(3):1303-1331.

PMID: 39841856 PMC: 11826901. DOI: 10.1021/acs.chemrev.4c00126.


Engineered initiator tRNAs can effectively start translation at non-AUG start codons and diversify N-terminal amino acids for mRNA Display.

Helmling C, Chan A, Cunningham C Nucleic Acids Res. 2025; 53(2).

PMID: 39831308 PMC: 11744186. DOI: 10.1093/nar/gkaf003.


Direct and quantitative analysis of tRNA acylation using intact tRNA liquid chromatography-mass spectrometry.

Fricke R, Knudson I, Swenson C, Smaga S, Schepartz A Nat Protoc. 2025; .

PMID: 39762443 DOI: 10.1038/s41596-024-01086-9.


Discovering covalent cyclic peptide inhibitors of peptidyl arginine deiminase 4 (PADI4) using mRNA-display with a genetically encoded electrophilic warhead.

Mathiesen I, Calder E, Kunzelmann S, Walport L Commun Chem. 2024; 7(1):304.

PMID: 39702664 PMC: 11659602. DOI: 10.1038/s42004-024-01388-9.


References
1.
Clemons Jr W, Brodersen D, McCutcheon J, MAY J, Carter A, Morgan-Warren R . Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. J Mol Biol. 2001; 310(4):827-43. DOI: 10.1006/jmbi.2001.4778. View

2.
Niwa N, Yamagishi Y, Murakami H, Suga H . A flexizyme that selectively charges amino acids activated by a water-friendly leaving group. Bioorg Med Chem Lett. 2009; 19(14):3892-4. DOI: 10.1016/j.bmcl.2009.03.114. View

3.
Murakami H, Ohta A, Ashigai H, Suga H . A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat Methods. 2006; 3(5):357-9. DOI: 10.1038/nmeth877. View

4.
Schagger H . Tricine-SDS-PAGE. Nat Protoc. 2007; 1(1):16-22. DOI: 10.1038/nprot.2006.4. View

5.
Kawakami T, Ohta A, Ohuchi M, Ashigai H, Murakami H, Suga H . Diverse backbone-cyclized peptides via codon reprogramming. Nat Chem Biol. 2009; 5(12):888-90. DOI: 10.1038/nchembio.259. View