» Articles » PMID: 36271504

Mitochondrial Stress-induced GFRAL Signaling Controls Diurnal Food Intake and Anxiety-like Behavior

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Growth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting. We further find that muscle mitochondrial stress response involves a GFRAL-dependent induction of hypothalamic corticotropin-releasing hormone, without elevated corticosterone levels. Finally, we identify that GFRAL signaling governs an anxiety-like behavior in male mice with muscle mitochondrial dysfunction, with females showing a less robust GFRAL-dependent anxiety-like phenotype. Together, we here provide novel evidence of a mitochondrial stress-induced muscle-brain crosstalk via the GDF15-GFRAL axis to modulate food intake and anxiogenic behavior.

Citing Articles

Targeting the GDF15 Signalling for Obesity Treatment: Recent Advances and Emerging Challenges.

Zhang J, Sun J, Li J, Xia H J Cell Mol Med. 2024; 28(24):e70251.

PMID: 39700016 PMC: 11657595. DOI: 10.1111/jcmm.70251.


GDF15 is required for maintaining subcutaneous adipose tissue lipid metabolic signature.

Igual-Gil C, Bishop C, Jahnert M, Johann K, Coleman V, Baum V Sci Rep. 2024; 14(1):26989.

PMID: 39505926 PMC: 11541726. DOI: 10.1038/s41598-024-77448-w.


Hepatocyte-specific GDF15 overexpression improves high-fat diet-induced obesity and hepatic steatosis in mice via hepatic FGF21 induction.

Takeuchi K, Yamaguchi K, Takahashi Y, Yano K, Okishio S, Ishiba H Sci Rep. 2024; 14(1):23993.

PMID: 39402176 PMC: 11473698. DOI: 10.1038/s41598-024-75107-8.


Beneficial Effects of Low-Grade Mitochondrial Stress on Metabolic Diseases and Aging.

Min S, Kang G, Park J, Kim M Yonsei Med J. 2024; 65(2):55-69.

PMID: 38288646 PMC: 10827639. DOI: 10.3349/ymj.2023.0131.


Temporal dynamics of muscle mitochondrial uncoupling-induced integrated stress response and ferroptosis defense.

Igual Gil C, Loser A, Lossow K, Schwarz M, Weber D, Grune T Front Endocrinol (Lausanne). 2023; 14:1277866.

PMID: 37941910 PMC: 10627798. DOI: 10.3389/fendo.2023.1277866.


References
1.
Choi M, Jung S, Chang J, Shong M . Cellular and Intercellular Homeostasis in Adipose Tissue with Mitochondria-Specific Stress. Endocrinol Metab (Seoul). 2021; 36(1):1-11. PMC: 7937835. DOI: 10.3803/EnM.2021.956. View

2.
Cimino I, Kim H, Tung Y, Pedersen K, Rimmington D, Tadross J . Activation of the hypothalamic-pituitary-adrenal axis by exogenous and endogenous GDF15. Proc Natl Acad Sci U S A. 2021; 118(27). PMC: 8271778. DOI: 10.1073/pnas.2106868118. View

3.
Dominguez-Gonzalez C, Badosa C, Madruga-Garrido M, Marti I, Paradas C, Ortez C . Growth Differentiation Factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy. Sci Rep. 2020; 10(1):10111. PMC: 7308386. DOI: 10.1038/s41598-020-66940-8. View

4.
ter Horst J, de Kloet E, Schachinger H, Oitzl M . Relevance of stress and female sex hormones for emotion and cognition. Cell Mol Neurobiol. 2011; 32(5):725-35. PMC: 3377901. DOI: 10.1007/s10571-011-9774-2. View

5.
Picard M, Sandi C . The social nature of mitochondria: Implications for human health. Neurosci Biobehav Rev. 2020; 120:595-610. PMC: 8058501. DOI: 10.1016/j.neubiorev.2020.04.017. View