» Articles » PMID: 36242330

Ultra-broadband Mid-infrared Generation in Dispersion-engineered Thin-film Lithium Niobate

Overview
Journal Opt Express
Date 2022 Oct 15
PMID 36242330
Authors
Affiliations
Soon will be listed here.
Abstract

Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1-2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.

Citing Articles

Wafer-Scale Periodic Poling of Thin-Film Lithium Niobate.

Chen M, Wang C, Tian X, Tang J, Gu X, Qian G Materials (Basel). 2024; 17(8).

PMID: 38673078 PMC: 11051387. DOI: 10.3390/ma17081720.


Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator.

Park T, Stokowski H, Ansari V, Gyger S, Multani K, Celik O Sci Adv. 2024; 10(11):eadl1814.

PMID: 38478618 PMC: 10936947. DOI: 10.1126/sciadv.adl1814.


Octave-spanning tunable infrared parametric oscillators in nanophotonics.

Ledezma L, Roy A, Costa L, Sekine R, Gray R, Guo Q Sci Adv. 2023; 9(30):eadf9711.

PMID: 37494442 PMC: 10371009. DOI: 10.1126/sciadv.adf9711.


Integrated quantum optical phase sensor in thin film lithium niobate.

Stokowski H, McKenna T, Park T, Hwang A, Dean D, Celik O Nat Commun. 2023; 14(1):3355.

PMID: 37291141 PMC: 10250335. DOI: 10.1038/s41467-023-38246-6.


High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region.

Zou K, Pang K, Song H, Fan J, Zhao Z, Song H Nat Commun. 2022; 13(1):7662.

PMID: 36496483 PMC: 9741622. DOI: 10.1038/s41467-022-35327-w.


References
1.
Mishra J, Jankowski M, Hwang A, Stokowski H, McKenna T, Langrock C . Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate. Opt Express. 2022; 30(18):32752-32760. PMC: 9576285. DOI: 10.1364/OE.467580. View

2.
Umemura N, Matsuda D, Mizuno T, Kato K . Sellmeier and thermo-optic dispersion formulas for the extraordinary ray of 5 mol. % MgO-doped congruent LiNbO(3) in the visible, infrared, and terahertz regions. Appl Opt. 2014; 53(25):5726-32. DOI: 10.1364/AO.53.005726. View

3.
Buchter K, Herrmann H, Langrock C, Fejer M, Sohler W . All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared. Opt Lett. 2009; 34(4):470-2. DOI: 10.1364/ol.34.000470. View

4.
Hu C, Pan A, Li T, Wang X, Liu Y, Tao S . High-efficient coupler for thin-film lithium niobate waveguide devices. Opt Express. 2021; 29(4):5397-5406. DOI: 10.1364/OE.416492. View

5.
Chen J, Tang C, Ma Z, Li Z, Sua Y, Huang Y . Efficient and highly tunable second-harmonic generation in Z-cut periodically poled lithium niobate nanowaveguides. Opt Lett. 2020; 45(13):3789-3792. DOI: 10.1364/OL.393445. View