» Articles » PMID: 37291141

Integrated Quantum Optical Phase Sensor in Thin Film Lithium Niobate

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Jun 8
PMID 37291141
Authors
Affiliations
Soon will be listed here.
Abstract

The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.

Citing Articles

Advanced Crystallization Methods for Thin-Film Lithium Niobate and Its Device Applications.

Yang R, Wei H, Tang G, Cao B, Chen K Materials (Basel). 2025; 18(5).

PMID: 40077179 PMC: 11901258. DOI: 10.3390/ma18050951.


Continuous-variable multipartite entanglement in an integrated microcomb.

Jia X, Zhai C, Zhu X, You C, Cao Y, Zhang X Nature. 2025; 639(8054):329-336.

PMID: 39972136 PMC: 11903341. DOI: 10.1038/s41586-025-08602-1.


Machine learning with knowledge constraints for design optimization of microring resonators as a quantum light source.

Sadeghli Dizaji P, Habibiyan H Sci Rep. 2025; 15(1):372.

PMID: 39748075 PMC: 11697578. DOI: 10.1038/s41598-024-84560-4.


InGaP χ integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation.

Akin J, Zhao Y, Misra Y, Haque A, Fang K Light Sci Appl. 2024; 13(1):290.

PMID: 39402033 PMC: 11473533. DOI: 10.1038/s41377-024-01653-5.


Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator.

Park T, Stokowski H, Ansari V, Gyger S, Multani K, Celik O Sci Adv. 2024; 10(11):eadl1814.

PMID: 38478618 PMC: 10936947. DOI: 10.1126/sciadv.adl1814.


References
1.
McKenna T, Stokowski H, Ansari V, Mishra J, Jankowski M, Sarabalis C . Ultra-low-power second-order nonlinear optics on a chip. Nat Commun. 2022; 13(1):4532. PMC: 9352777. DOI: 10.1038/s41467-022-31134-5. View

2.
Kimble , Hall , Wu . Generation of squeezed states by parametric down conversion. Phys Rev Lett. 1986; 57(20):2520-2523. DOI: 10.1103/PhysRevLett.57.2520. View

3.
Mishra J, Jankowski M, Hwang A, Stokowski H, McKenna T, Langrock C . Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate. Opt Express. 2022; 30(18):32752-32760. PMC: 9576285. DOI: 10.1364/OE.467580. View

4.
Safavi-Naeini A, Groblacher S, Hill J, Chan J, Aspelmeyer M, Painter O . Squeezed light from a silicon micromechanical resonator. Nature. 2013; 500(7461):185-9. DOI: 10.1038/nature12307. View

5.
Hanay M, Kelber S, Naik A, Chi D, Hentz S, Bullard E . Single-protein nanomechanical mass spectrometry in real time. Nat Nanotechnol. 2012; 7(9):602-8. PMC: 3435450. DOI: 10.1038/nnano.2012.119. View