» Articles » PMID: 36241639

Nanoparticle-based Modulation of CD4 T Cell Effector and Helper Functions Enhances Adoptive Immunotherapy

Abstract

Helper (CD4) T cells perform direct therapeutic functions and augment responses of cells such as cytotoxic (CD8) T cells against a wide variety of diseases and pathogens. Nevertheless, inefficient synthetic technologies for expansion of antigen-specific CD4 T cells hinders consistency and scalability of CD4 T cell-based therapies, and complicates mechanistic studies. Here we describe a nanoparticle platform for ex vivo CD4 T cell culture that mimics antigen presenting cells (APC) through display of major histocompatibility class II (MHC II) molecules. When combined with soluble co-stimulation signals, MHC II artificial APCs (aAPCs) expand cognate murine CD4 T cells, including rare endogenous subsets, to induce potent effector functions in vitro and in vivo. Moreover, MHC II aAPCs provide help signals that enhance antitumor function of aAPC-activated CD8 T cells in a mouse tumor model. Lastly, human leukocyte antigen class II-based aAPCs expand rare subsets of functional, antigen-specific human CD4 T cells. Overall, MHC II aAPCs provide a promising approach for harnessing targeted CD4 T cell responses.

Citing Articles

Ex vivo expansion and hydrogel-mediated in vivo delivery of tissue-resident memory T cells for immunotherapy.

Li S, Yao Z, Wang H, Ecker J, Omotoso M, Lee J Sci Adv. 2024; 10(50):eadm7928.

PMID: 39671478 PMC: 11641059. DOI: 10.1126/sciadv.adm7928.


Nanomedicine for cancer patient-centered care.

Sorrentino C, Ciummo S, Fieni C, Di Carlo E MedComm (2020). 2024; 5(11):e767.

PMID: 39434967 PMC: 11491554. DOI: 10.1002/mco2.767.


Alginate-based artificial antigen presenting cells expand functional CD8 T cells with memory characteristics for adoptive cell therapy.

Omotoso M, Est-Witte S, Shannon S, Li S, Nair N, Neshat S Biomaterials. 2024; 313:122773.

PMID: 39217794 PMC: 11423771. DOI: 10.1016/j.biomaterials.2024.122773.


Biomaterials-mediated ligation of immune cell surface receptors for immunoengineering.

Cui H, Zhang L, Shi Y Immunooncol Technol. 2024; 21:100695.

PMID: 38405432 PMC: 10891334. DOI: 10.1016/j.iotech.2023.100695.


Genetically engineered CD80-pMHC-harboring extracellular vesicles for antigen-specific CD4 T-cell engagement.

Ishina I, Kurbatskaia I, Mamedov A, Shramova E, Deyev S, Nurbaeva K Front Bioeng Biotechnol. 2024; 11:1341685.

PMID: 38304104 PMC: 10833362. DOI: 10.3389/fbioe.2023.1341685.


References
1.
Kaluza K, Thompson J, Kottke T, Flynn Gilmer H, Knutson D, Vile R . Adoptive T cell therapy promotes the emergence of genomically altered tumor escape variants. Int J Cancer. 2011; 131(4):844-54. PMC: 3903054. DOI: 10.1002/ijc.26447. View

2.
Perica K, Bieler J, Schutz C, Varela J, Douglass J, Skora A . Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy. ACS Nano. 2015; 9(7):6861-71. PMC: 5082131. DOI: 10.1021/acsnano.5b02829. View

3.
Perez-Diez A, Joncker N, Choi K, Chan W, Anderson C, Lantz O . CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood. 2007; 109(12):5346-54. PMC: 1890845. DOI: 10.1182/blood-2006-10-051318. View

4.
Cachot A, Bilous M, Liu Y, Li X, Saillard M, Cenerenti M . Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci Adv. 2021; 7(9). PMC: 7909889. DOI: 10.1126/sciadv.abe3348. View

5.
Kosmides A, Sidhom J, Fraser A, Bessell C, Schneck J . Dual Targeting Nanoparticle Stimulates the Immune System To Inhibit Tumor Growth. ACS Nano. 2017; 11(6):5417-5429. PMC: 8635119. DOI: 10.1021/acsnano.6b08152. View