» Articles » PMID: 36220807

The Unquantified Mass Loss of Northern Hemisphere Marine-terminating Glaciers from 2000-2020

Abstract

In the Northern Hemisphere, ~1500 glaciers, accounting for 28% of glacierized area outside the Greenland Ice Sheet, terminate in the ocean. Glacier mass loss at their ice-ocean interface, known as frontal ablation, has not yet been comprehensively quantified. Here, we estimate decadal frontal ablation from measurements of ice discharge and terminus position change from 2000 to 2020. We bias-correct and cross-validate estimates and uncertainties using independent sources. Frontal ablation of marine-terminating glaciers contributed an average of 44.47 ± 6.23 Gt a of ice to the ocean from 2000 to 2010, and 51.98 ± 4.62 Gt a from 2010 to 2020. Ice discharge from 2000 to 2020 was equivalent to 2.10 ± 0.22 mm of sea-level rise and comprised approximately 79% of frontal ablation, with the remainder from terminus retreat. Near-coastal areas most impacted include Austfonna, Svalbard, and central Severnaya Zemlya, the Russian Arctic, and a few Alaskan fjords.

Citing Articles

Community estimate of global glacier mass changes from 2000 to 2023.

Nature. 2025; 639(8054):382-388.

PMID: 39972143 PMC: 11903323. DOI: 10.1038/s41586-024-08545-z.


A dataset on bathymetry and hydrology of an emerging periglacial lagoon in Svalbard, Arctic.

Siaulys A, Saskov A, Kilmonaite G, Lukashanets D, Politi T, Samuiloviene A Data Brief. 2025; 59:111304.

PMID: 39925391 PMC: 11804721. DOI: 10.1016/j.dib.2025.111304.


Pervasive glacier retreats across Svalbard from 1985 to 2023.

Li T, Hofer S, Moholdt G, Igneczi A, Heidler K, Zhu X Nat Commun. 2025; 16(1):705.

PMID: 39814715 PMC: 11735618. DOI: 10.1038/s41467-025-55948-1.


Atmospheric-river-induced foehn events drain glaciers on Novaya Zemlya.

Haacker J, Wouters B, Fettweis X, Glissenaar I, Box J Nat Commun. 2024; 15(1):7021.

PMID: 39147761 PMC: 11327257. DOI: 10.1038/s41467-024-51404-8.


Impacts of glacial discharge on the primary production in a Greenlandic fjord.

Hoshiba Y, Matsumura Y, Kanna N, Ohashi Y, Sugiyama S Sci Rep. 2024; 14(1):15530.

PMID: 39080320 PMC: 11289466. DOI: 10.1038/s41598-024-64529-z.


References
1.
Noel B, van de Berg W, Lhermitte S, Wouters B, Machguth H, Howat I . A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nat Commun. 2017; 8:14730. PMC: 5380968. DOI: 10.1038/ncomms14730. View

2.
Kochtitzky W, Copland L, Van Wychen W, Hugonnet R, Hock R, Dowdeswell J . The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000-2020. Nat Commun. 2022; 13(1):5835. PMC: 9553960. DOI: 10.1038/s41467-022-33231-x. View

3.
Zemp M, Huss M, Thibert E, Eckert N, McNabb R, Huber J . Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature. 2019; 568(7752):382-386. DOI: 10.1038/s41586-019-1071-0. View

4.
Noel B, Jakobs C, van Pelt W, Lhermitte S, Wouters B, Kohler J . Low elevation of Svalbard glaciers drives high mass loss variability. Nat Commun. 2020; 11(1):4597. PMC: 7490702. DOI: 10.1038/s41467-020-18356-1. View

5.
Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C, Girod L . Accelerated global glacier mass loss in the early twenty-first century. Nature. 2021; 592(7856):726-731. DOI: 10.1038/s41586-021-03436-z. View