» Articles » PMID: 32929066

Low Elevation of Svalbard Glaciers Drives High Mass Loss Variability

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Sep 15
PMID 32929066
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Compared to other Arctic ice masses, Svalbard glaciers are low-elevated with flat interior accumulation areas, resulting in a marked peak in their current hypsometry (area-elevation distribution) at  ~450 m above sea level. Since summer melt consistently exceeds winter snowfall, these low-lying glaciers can only survive by refreezing a considerable fraction of surface melt and rain in the porous firn layer covering their accumulation zones. We use a high-resolution climate model to show that modest atmospheric warming in the mid-1980s forced the firn zone to retreat upward by  ~100 m to coincide with the hypsometry peak. This led to a rapid areal reduction of firn cover available for refreezing, and strongly increased runoff from dark, bare ice areas, amplifying mass loss from all elevations. As the firn line fluctuates around the hypsometry peak in the current climate, Svalbard glaciers will continue to lose mass and show high sensitivity to temperature perturbations.

Citing Articles

Pervasive glacier retreats across Svalbard from 1985 to 2023.

Li T, Hofer S, Moholdt G, Igneczi A, Heidler K, Zhu X Nat Commun. 2025; 16(1):705.

PMID: 39814715 PMC: 11735618. DOI: 10.1038/s41467-025-55948-1.


Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic.

Trejos-Espeleta J, Marin-Jaramillo J, Schmidt S, Sommers P, Bradley J, Orsi W Proc Natl Acad Sci U S A. 2024; 121(28):e2402689121.

PMID: 38954550 PMC: 11252988. DOI: 10.1073/pnas.2402689121.


Linking drought indices to atmospheric circulation in Svalbard, in the Atlantic sector of the High Arctic.

Migala K, Lupikasza E, Osuch M, Opala-Owczarek M, Owczarek P Sci Rep. 2024; 14(1):2160.

PMID: 38272941 PMC: 10810796. DOI: 10.1038/s41598-024-51869-z.


Higher Antarctic ice sheet accumulation and surface melt rates revealed at 2 km resolution.

Noel B, van Wessem J, Wouters B, Trusel L, Lhermitte S, van den Broeke M Nat Commun. 2023; 14(1):7949.

PMID: 38040701 PMC: 10692123. DOI: 10.1038/s41467-023-43584-6.


Peak refreezing in the Greenland firn layer under future warming scenarios.

Noel B, Lenaerts J, Lipscomb W, Thayer-Calder K, van den Broeke M Nat Commun. 2022; 13(1):6870.

PMID: 36369265 PMC: 9652464. DOI: 10.1038/s41467-022-34524-x.


References
1.
Gardner A, Moholdt G, Cogley J, Wouters B, Arendt A, Wahr J . A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science. 2013; 340(6134):852-7. DOI: 10.1126/science.1234532. View

2.
Zemp M, Huss M, Thibert E, Eckert N, McNabb R, Huber J . Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature. 2019; 568(7752):382-386. DOI: 10.1038/s41586-019-1071-0. View

3.
Noel B, van de Berg W, Lhermitte S, Wouters B, Machguth H, Howat I . A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nat Commun. 2017; 8:14730. PMC: 5380968. DOI: 10.1038/ncomms14730. View

4.
Noel B, van de Berg W, Lhermitte S, van den Broeke M . Rapid ablation zone expansion amplifies north Greenland mass loss. Sci Adv. 2019; 5(9):eaaw0123. PMC: 6726448. DOI: 10.1126/sciadv.aaw0123. View

5.
Wouters B, Martin-Espanol A, Helm V, Flament T, van Wessem J, Ligtenberg S . Glacier mass loss. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science. 2015; 348(6237):899-903. DOI: 10.1126/science.aaa5727. View