» Articles » PMID: 36180612

Recent Developments of the Reconstruction in Magnetic Particle Imaging

Overview
Date 2022 Sep 30
PMID 36180612
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic particle imaging (MPI) is an emerging molecular imaging technique with high sensitivity and temporal-spatial resolution. Image reconstruction is an important research topic in MPI, which converts an induced voltage signal into the image of superparamagnetic iron oxide particles concentration distribution. MPI reconstruction primarily involves system matrix- and x-space-based methods. In this review, we provide a detailed overview of the research status and future research trends of these two methods. In addition, we review the application of deep learning methods in MPI reconstruction and the current open sources of MPI. Finally, research opinions on MPI reconstruction are presented. We hope this review promotes the use of MPI in clinical applications.

Citing Articles

Optical-magnetic Imaging for Optimizing Lymphodepletion-TIL Combination Therapy in Breast Cancer.

Li J, Guo L, Feng Y, Li G, Sun H, Huang W Mol Imaging Biol. 2025; .

PMID: 39909989 DOI: 10.1007/s11307-025-01985-7.


Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Velazquez-Albino A, Imhoff E, Rinaldi-Ramos C Sci Adv. 2025; 11(2):eado7356.

PMID: 39772674 PMC: 11708890. DOI: 10.1126/sciadv.ado7356.


Machine Learning and Deep Learning Applications in Magnetic Particle Imaging.

Nigam S, Gjelaj E, Wang R, Wei G, Wang P J Magn Reson Imaging. 2024; 61(1):42-51.

PMID: 38358090 PMC: 11324856. DOI: 10.1002/jmri.29294.


Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging.

Shang Y, Liu J, Wang Y Biology (Basel). 2024; 13(1).

PMID: 38275723 PMC: 11154287. DOI: 10.3390/biology13010002.


Deep Penetrating and Sensitive Targeted Magnetic Particle Imaging and Photothermal Therapy of Early-Stage Glioblastoma Based on a Biomimetic Nanoplatform.

Huang X, Hui H, Shang W, Gao P, Zhou Y, Pang W Adv Sci (Weinh). 2023; 10(19):e2300854.

PMID: 37150856 PMC: 10323639. DOI: 10.1002/advs.202300854.

References
1.
Ozaslan A, Alacaoglu A, Demirel O, Cukur T, Saritas E . Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging. Phys Med Biol. 2019; 64(16):165018. DOI: 10.1088/1361-6560/ab3525. View

2.
Gungor A, Askin B, Soydan D, Saritas E, Top C, Cukur T . TranSMS: Transformers for Super-Resolution Calibration in Magnetic Particle Imaging. IEEE Trans Med Imaging. 2022; 41(12):3562-3574. DOI: 10.1109/TMI.2022.3189693. View

3.
Goodwill P, Konkle J, Zheng B, Saritas E, Conolly S . Projection x-space magnetic particle imaging. IEEE Trans Med Imaging. 2012; 31(5):1076-85. PMC: 3990468. DOI: 10.1109/TMI.2012.2185247. View

4.
Biacchi A, Bui T, Dennis C, Woods S, Hight Walker A . Design and engineering colloidal magnetic particles for nanoscale thermometry. Int J Magn Part Imaging. 2021; 6(2 Suppl 1). PMC: 8191371. DOI: 10.18416/IJMPI.2020.2009068. View

5.
Wu L, Zhang Y, Steinberg G, Qu H, Huang S, Cheng M . A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging. AJNR Am J Neuroradiol. 2019; 40(2):206-212. PMC: 7028616. DOI: 10.3174/ajnr.A5896. View