» Articles » PMID: 30552918

Superparamagnetic Iron Oxides As MPI Tracers: A Primer and Review of Early Applications

Overview
Specialty Pharmacology
Date 2018 Dec 16
PMID 30552918
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic particle imaging (MPI) has recently emerged as a non-invasive, whole body imaging technique that detects superparamagnetic iron oxide (SPIO) nanoparticles similar as those used in magnetic resonance imaging (MRI). Based on tracer "hot spot" detection instead of providing contrast on MRI scans, MPI has already proven to be truly quantitative. Without the presence of endogenous background signal, MPI can also be used in certain tissues where the endogenous MRI signal is too low to provide contrast. After an introduction to the history and simplified principles of MPI, this review focuses on early MPI applications including MPI cell tracking, multiplexed MPI, perfusion and tumor MPI, lung MPI, functional MPI, and MPI-guided hyperthermia. While it is too early to tell if MPI will become a mainstay imaging technique with the (theoretical) sensitivity that it promises, and if it can successfully compete with SPIO-based H MRI and perfluorocarbon-based F MRI, it provides unprecedented opportunities for exploring new nanoparticle-based imaging applications.

Citing Articles

MPI performance of magnetic nanoparticles depends on matrix composition and temperature: implications for MPI signal amplitude, spatial resolution, and tracer quantification.

Salimi M, Wang W, Roux S, Laurent G, Bazzi R, Goodwill P Nanoscale Adv. 2025; 7(4):1018-1029.

PMID: 39906142 PMC: 11789940. DOI: 10.1039/d4na00518j.


Ranking Magnetic Colloid Performance for Magnetic Particle Imaging and Magnetic Particle Hyperthermia.

Carlton H, Salimi M, Arepally N, Bentolila G, Sharma A, Bibic A Adv Funct Mater. 2025; 35(2):2412321.

PMID: 39882193 PMC: 11774450. DOI: 10.1002/adfm.202412321.


Pharmacokinetic Profiling of Unlabeled Magnetic Nanoparticles Using Magnetic Particle Imaging as a Novel Cold Tracer Assay.

Salimi M, Kuddannaya S, Bulte J Nano Lett. 2024; 24(49):15557-15564.

PMID: 39591368 PMC: 11646110. DOI: 10.1021/acs.nanolett.4c03553.


Magnetic Graphitic Nanocapsules: Fabrication, Classification, and Theranostic Applications.

Xia X, Wang Z, Yin Z, Yang Y, Xu Y, Chen Z Chem Biomed Imaging. 2024; 1(8):683-691.

PMID: 39474309 PMC: 11503689. DOI: 10.1021/cbmi.3c00013.


Comparison between USPIOs and SPIOs for Multimodal Imaging of Extracellular Vesicles Extracted from Adipose Tissue-Derived Adult Stem Cells.

Capuzzo A, Piccolantonio G, Negri A, Bontempi P, Lacavalla M, Malatesta M Int J Mol Sci. 2024; 25(17).

PMID: 39273647 PMC: 11395141. DOI: 10.3390/ijms25179701.


References
1.
Ferrauto G, Castelli D, Terreno E, Aime S . In vivo MRI visualization of different cell populations labeled with PARACEST agents. Magn Reson Med. 2012; 69(6):1703-11. DOI: 10.1002/mrm.24411. View

2.
Mason E, Cooley C, Cauley S, Griswold M, Conolly S, Wald L . Design analysis of an MPI human functional brain scanner. Int J Magn Part Imaging. 2017; 3(1). PMC: 5526464. DOI: 10.18416/ijmpi.2017.1703008. View

3.
Gdaniec N, Szwargulski P, Knopp T . Fast multiresolution data acquisition for magnetic particle imaging using adaptive feature detection. Med Phys. 2017; 44(12):6456-6460. DOI: 10.1002/mp.12628. View

4.
Ferguson R, Khandhar A, Kemp S, Arami H, Saritas E, Croft L . Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging. 2014; 34(5):1077-84. PMC: 4428902. DOI: 10.1109/TMI.2014.2375065. View

5.
Yeh T, Zhang W, Ildstad S, Ho C . Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med. 1993; 30(5):617-25. DOI: 10.1002/mrm.1910300513. View