» Articles » PMID: 36171508

Intraventricular Hemorrhage Prediction in Premature Neonates in the Era of Hemodynamics Monitoring: a Prospective Cohort Study

Overview
Journal Eur J Pediatr
Specialty Pediatrics
Date 2022 Sep 28
PMID 36171508
Authors
Affiliations
Soon will be listed here.
Abstract

Conclusions: There are strong relations between both low SVCF and high ACA-RI, and IVH development in premature neonates ≤ 32 weeks and birth weight ≤ 1500 g, with more significance towards catastrophic IVH. Admission RSS and LVO are the strongest factors affecting SVCF. Maternal anemia, patent ductus arteriosus size (mm/kg), and capillary refill time were significantly associated with high ACA-RI. These findings help in more understanding of pathophysiological factors affecting central perfusion that might affect the longer term neurodeveopmental outcome.

Trial Registration: This work was registered in clinical trial.gv no NCT05050032.

What Is Known: •Whether SVCF and RI-ACA can predict IVH in preterm neonates is still debatable.

What Is New: •Low SVC flow and high ACA-RI significantly increased risk of IVH, confirming the role of hypoperfusion-reperfusion cycle in IVH development. The most striking result that combined metrics using the cut-off value of < 41 ml/kg/min for SVCF and > 0.85 for ACA-RI "in the first day of life" can correctly reject the presence of IVH in 98% of patients "during the first week of life."

Citing Articles

Pooled prevalence and predictors of intraventricular hemorrhage (IVH) in preterm neonates (28-34 weeks) in Africa: a systematic review and meta-analysis.

Kebede S, Kefale D, Aytenew T, Agmas K BMC Pediatr. 2025; 25(1):116.

PMID: 39953456 PMC: 11829404. DOI: 10.1186/s12887-025-05462-6.


Occurrence and Time of Onset of Intraventricular Hemorrhage in Preterm Neonates: A Systematic Review and Meta-Analysis of Individual Patient Data.

Nagy Z, Obeidat M, Mate V, Nagy R, Szanto E, Veres D JAMA Pediatr. 2025; 179(2):145-154.

PMID: 39786414 PMC: 11791718. DOI: 10.1001/jamapediatrics.2024.5998.


Development of a machine learning model for prediction of intraventricular hemorrhage in premature neonates.

Saeedi E, Mashhadinejad M, Tavallaii A Childs Nerv Syst. 2024; 41(1):51.

PMID: 39680160 DOI: 10.1007/s00381-024-06714-z.


Assessment of intraventricular hemorrhage risk in preterm infants using mathematically simulated cerebral blood flow.

Sidorenko I, Brodkorb S, Felderhoff-Muser U, Rieger-Fackeldey E, Kruger M, Feddahi N Front Neurol. 2024; 15:1465440.

PMID: 39494169 PMC: 11527722. DOI: 10.3389/fneur.2024.1465440.


Development of a machine learning model to identify intraventricular hemorrhage using time-series analysis in preterm infants.

Han H, Ji H, Choi J, Chung Y, Kim H, Choi C Sci Rep. 2024; 14(1):23740.

PMID: 39390062 PMC: 11467187. DOI: 10.1038/s41598-024-74298-4.


References
1.
Han R, McKinnon A, CreveCoeur T, Baksh B, Mathur A, Smyser C . Predictors of mortality for preterm infants with intraventricular hemorrhage: a population-based study. Childs Nerv Syst. 2018; 34(11):2203-2213. PMC: 6326904. DOI: 10.1007/s00381-018-3897-4. View

2.
Siffel C, Kistler K, Sarda S . Global incidence of intraventricular hemorrhage among extremely preterm infants: a systematic literature review. J Perinat Med. 2021; 49(9):1017-1026. DOI: 10.1515/jpm-2020-0331. View

3.
MacLeod R, Paulson J, Okalany N, Okello F, Acom L, Ikiror J . Intraventricular haemorrhage in a Ugandan cohort of low birth weight neonates: the IVHU study. BMC Pediatr. 2021; 21(1):12. PMC: 7786968. DOI: 10.1186/s12887-020-02464-4. View

4.
Noori S, Seri I . Hemodynamic antecedents of peri/intraventricular hemorrhage in very preterm neonates. Semin Fetal Neonatal Med. 2015; 20(4):232-7. DOI: 10.1016/j.siny.2015.02.004. View

5.
Soleymani S, Borzage M, Seri I . Hemodynamic monitoring in neonates: advances and challenges. J Perinatol. 2010; 30 Suppl:S38-45. DOI: 10.1038/jp.2010.101. View