» Articles » PMID: 36170375

Therapeutic Implications of Mitochondrial Stress-induced Proteasome Inhibitor Resistance in Multiple Myeloma

Abstract

The connections between metabolic state and therapy resistance in multiple myeloma (MM) are poorly understood. We previously reported that electron transport chain (ETC) suppression promotes sensitivity to the BCL-2 antagonist venetoclax. Here, we show that ETC suppression promotes resistance to proteasome inhibitors (PIs). Interrogation of ETC-suppressed MM reveals integrated stress response-dependent suppression of protein translation and ubiquitination, leading to PI resistance. ETC and protein translation gene expression signatures from the CoMMpass trial are down-regulated in patients with poor outcome and relapse, corroborating our in vitro findings. ETC-suppressed MM exhibits up-regulation of the cystine-glutamate antiporter , and analysis of patient single-cell RNA-seq shows that clusters with low ETC gene expression correlate with higher expression. Furthermore, erastin or venetoclax treatment diminishes mitochondrial stress-induced PI resistance. In sum, our work demonstrates that mitochondrial stress promotes PI resistance and underscores the need for implementing combinatorial regimens in MM cognizant of mitochondrial metabolic state.

Citing Articles

A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers.

Kennedy L, Sandhu J, Harper M, Cuperlovic-Culf M BMC Bioinformatics. 2025; 26(1):48.

PMID: 39934670 PMC: 11817629. DOI: 10.1186/s12859-025-06051-1.


Single-cell sequencing analysis of multiple myeloma heterogeneity and identification of new theranostic targets.

Wang Y, Peng Y, Yang C, Xiong D, Wang Z, Peng H Cell Death Dis. 2024; 15(9):672.

PMID: 39271659 PMC: 11399131. DOI: 10.1038/s41419-024-07027-4.


Venetoclax resistance in acute lymphoblastic leukemia is characterized by increased mitochondrial activity and can be overcome by co-targeting oxidative phosphorylation.

Enzenmuller S, Niedermayer A, Seyfried F, Muench V, Tews D, Rupp U Cell Death Dis. 2024; 15(7):475.

PMID: 38961053 PMC: 11222427. DOI: 10.1038/s41419-024-06864-7.


Tigecycline Opposes Bortezomib Effect on Myeloma Cells Decreasing Mitochondrial Reactive Oxygen Species Production.

Ramos-Acosta C, Huerta-Pantoja L, Salazar-Hidalgo M, Mayol E, Jimenez-Vega S, Garcia-Pena P Int J Mol Sci. 2024; 25(9).

PMID: 38732105 PMC: 11084384. DOI: 10.3390/ijms25094887.


Phototherapy techniques for the management of musculoskeletal disorders: strategies and recent advances.

Zhang Z, Wang R, Xue H, Knoedler S, Geng Y, Liao Y Biomater Res. 2023; 27(1):123.

PMID: 38017585 PMC: 10685661. DOI: 10.1186/s40824-023-00458-8.


References
1.
Lu S, Wang J . The resistance mechanisms of proteasome inhibitor bortezomib. Biomark Res. 2013; 1(1):13. PMC: 4177604. DOI: 10.1186/2050-7771-1-13. View

2.
Tsvetkov P, Detappe A, Cai K, Keys H, Brune Z, Ying W . Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019; 15(7):681-689. PMC: 8183600. DOI: 10.1038/s41589-019-0291-9. View

3.
Fulda S, Galluzzi L, Kroemer G . Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010; 9(6):447-64. DOI: 10.1038/nrd3137. View

4.
Wallace D . A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005; 39:359-407. PMC: 2821041. DOI: 10.1146/annurev.genet.39.110304.095751. View

5.
Ling Y, Liebes L, Zou Y, Perez-Soler R . Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003; 278(36):33714-23. DOI: 10.1074/jbc.M302559200. View