» Articles » PMID: 36146663

Mucin Transiently Sustains Coronavirus Infectivity Through Heterogenous Changes in Phase Morphology of Evaporating Aerosol

Overview
Journal Viruses
Publisher MDPI
Specialty Microbiology
Date 2022 Sep 23
PMID 36146663
Authors
Affiliations
Soon will be listed here.
Abstract

Respiratory pathogens can be spread though the transmission of aerosolised expiratory secretions in the form of droplets or particulates. Understanding the fundamental aerosol parameters that govern how such pathogens survive whilst airborne is essential to understanding and developing methods of restricting their dissemination. Pathogen viability measurements made using Controlled Electrodynamic Levitation and Extraction of Bioaerosol onto Substrate (CELEBS) in tandem with a comparative kinetics electrodynamic balance (CKEDB) measurements allow for a direct comparison between viral viability and evaporation kinetics of the aerosol with a time resolution of seconds. Here, we report the airborne survival of mouse hepatitis virus (MHV) and determine a comparable loss of infectivity in the aerosol phase to our previous observations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the addition of clinically relevant concentrations of mucin to the bioaerosol, there is a transient mitigation of the loss of viral infectivity at 40% RH. Increased concentrations of mucin promoted heterogenous phase change during aerosol evaporation, characterised as the formation of inclusions within the host droplet. This research demonstrates the role of mucus in the aerosol phase and its influence on short-term airborne viral stability.

Citing Articles

Review of factors affecting virus inactivation in aerosols and droplets.

Longest A, Rockey N, Lakdawala S, Marr L J R Soc Interface. 2024; 21(215):18.

PMID: 38920060 PMC: 11285516. DOI: 10.1098/rsif.2024.0018.


Ambient carbon dioxide concentration correlates with SARS-CoV-2 aerostability and infection risk.

Haddrell A, Oswin H, Otero-Fernandez M, Robinson J, Cogan T, Alexander R Nat Commun. 2024; 15(1):3487.

PMID: 38664424 PMC: 11045827. DOI: 10.1038/s41467-024-47777-5.


An assessment of the airborne longevity of group A Streptococcus.

Oswin H, Blake E, Haddrell A, Finn A, Sriskandan S, Reid J Microbiology (Reading). 2024; 170(1).

PMID: 38180461 PMC: 10866022. DOI: 10.1099/mic.0.001421.


Differences in airborne stability of SARS-CoV-2 variants of concern is impacted by alkalinity of surrogates of respiratory aerosol.

Haddrell A, Otero-Fernandez M, Oswin H, Cogan T, Bazire J, Tian J J R Soc Interface. 2023; 20(203):20230062.

PMID: 37340783 PMC: 10282576. DOI: 10.1098/rsif.2023.0062.


Physicochemical characterization of porcine respiratory aerosol and considerations for future aerovirology.

Groth R, Niazi S, Spann K, Johnson G, Ristovski Z PNAS Nexus. 2023; 2(3):pgad087.

PMID: 37007717 PMC: 10063220. DOI: 10.1093/pnasnexus/pgad087.

References
1.
Langereis M, van Vliet A, Boot W, de Groot R . Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein. J Virol. 2010; 84(17):8970-4. PMC: 2919023. DOI: 10.1128/JVI.00566-10. View

2.
Ratnesar-Shumate S, Williams G, Green B, Krause M, Holland B, Wood S . Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J Infect Dis. 2020; 222(2):214-222. PMC: 7313905. DOI: 10.1093/infdis/jiaa274. View

3.
Tellier R, Li Y, Cowling B, Tang J . Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis. 2019; 19(1):101. PMC: 6357359. DOI: 10.1186/s12879-019-3707-y. View

4.
Vejerano E, Marr L . Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface. 2018; 15(139). PMC: 5832737. DOI: 10.1098/rsif.2017.0939. View

5.
Woo M, Hsu Y, Wu C, Heimbuch B, Wander J . Method for contamination of filtering facepiece respirators by deposition of MS2 viral aerosols. J Aerosol Sci. 2020; 41(10):944-952. PMC: 7094656. DOI: 10.1016/j.jaerosci.2010.07.003. View