Liu C, Huang W, He X, Feng Z, Chen Q
Animals (Basel). 2024; 14(3).
PMID: 38338091
PMC: 10854734.
DOI: 10.3390/ani14030448.
Aamelfot M, Fosse J, Viljugrein H, Ploss F, Benestad S, McBeath A
PLoS Pathog. 2022; 18(10):e1010905.
PMID: 36240255
PMC: 9621750.
DOI: 10.1371/journal.ppat.1010905.
Alexander R, Tian J, Haddrell A, Oswin H, Neal E, Hardy D
Viruses. 2022; 14(9).
PMID: 36146663
PMC: 9503081.
DOI: 10.3390/v14091856.
Srivastava S, Verhagen A, Sasmal A, Wasik B, Diaz S, Yu H
Glycobiology. 2022; 32(12):1116-1136.
PMID: 35926090
PMC: 9680117.
DOI: 10.1093/glycob/cwac050.
Saso W, Yamasaki M, Nakakita S, Fukushi S, Tsuchimoto K, Watanabe N
PLoS Pathog. 2022; 18(6):e1010590.
PMID: 35700214
PMC: 9197039.
DOI: 10.1371/journal.ppat.1010590.
Mucins Inhibit Coronavirus Infection in a Glycan-Dependent Manner.
Wardzala C, Wood A, Belnap D, Kramer J
ACS Cent Sci. 2022; 8(3):351-360.
PMID: 35345395
PMC: 8864775.
DOI: 10.1021/acscentsci.1c01369.
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review.
Everest H, Stevenson-Leggett P, Bailey D, Bickerton E, Keep S
Viruses. 2022; 14(2).
PMID: 35215937
PMC: 8878323.
DOI: 10.3390/v14020351.
Structure of the Core Postfusion Porcine Endogenous Retrovirus Fusion Protein.
Dean T, Serrao V, Lee J
mBio. 2022; 13(1):e0292021.
PMID: 35073741
PMC: 8787476.
DOI: 10.1128/mbio.02920-21.
Reverse Genetics with a Full-Length Infectious cDNA Clone of Bovine Torovirus.
Ujike M, Etoh Y, Urushiyama N, Taguchi F, Asanuma H, Enjuanes L
J Virol. 2021; 96(3):e0156121.
PMID: 34817201
PMC: 8827028.
DOI: 10.1128/JVI.01561-21.
SDAV, the Rat Coronavirus-How Much Do We Know about It in the Light of Potential Zoonoses.
Bartak M, Slonska A, Banbura M, Cymerys J
Viruses. 2021; 13(10).
PMID: 34696425
PMC: 8537196.
DOI: 10.3390/v13101995.
Recent Progress in Torovirus Molecular Biology.
Ujike M, Taguchi F
Viruses. 2021; 13(3).
PMID: 33800523
PMC: 7998386.
DOI: 10.3390/v13030435.
Corona Viruses: A Review on SARS, MERS and COVID-19.
Chathappady House N, Palissery S, Sebastian H
Microbiol Insights. 2021; 14:11786361211002481.
PMID: 33795938
PMC: 7983408.
DOI: 10.1177/11786361211002481.
The emerging SARS-CoV, MERS-CoV, and SARS-CoV-2: An insight into the viruses zoonotic aspects.
Al-Salihi K, Khalaf J
Vet World. 2021; 14(1):190-199.
PMID: 33642804
PMC: 7896889.
DOI: 10.14202/vetworld.2021.190-199.
Natural Infection by SARS-CoV-2 in Companion Animals: A Review of Case Reports and Current Evidence of Their Role in the Epidemiology of COVID-19.
de Morais H, Dos Santos A, Cannes do Nascimento N, Kmetiuk L, Barbosa D, Brandao P
Front Vet Sci. 2020; 7:591216.
PMID: 33195627
PMC: 7652926.
DOI: 10.3389/fvets.2020.591216.
Molecular diversity of coronavirus host cell entry receptors.
Millet J, Jaimes J, Whittaker G
FEMS Microbiol Rev. 2020; 45(3).
PMID: 33118022
PMC: 7665467.
DOI: 10.1093/femsre/fuaa057.
SARS-CoV, MERS-CoV, and 2019-nCoV viruses: an overview of origin, evolution, and genetic variations.
Krishnamoorthy S, Swain B, Verma R, Gunthe S
Virusdisease. 2020; 31(4):411-423.
PMID: 33102628
PMC: 7567416.
DOI: 10.1007/s13337-020-00632-9.
Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity.
Lang Y, Li W, Li Z, Koerhuis D, van den Burg A, Rozemuller E
Proc Natl Acad Sci U S A. 2020; 117(41):25759-25770.
PMID: 32994342
PMC: 7568303.
DOI: 10.1073/pnas.2006299117.
Thermodynamic equilibrium dose-response models for MERS-CoV infection reveal a potential protective role of human lung mucus but not for SARS-CoV-2.
Gale P
Microb Risk Anal. 2020; 16:100140.
PMID: 32984489
PMC: 7501778.
DOI: 10.1016/j.mran.2020.100140.
SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction.
Kim C
Int J Mol Sci. 2020; 21(12).
PMID: 32604730
PMC: 7352545.
DOI: 10.3390/ijms21124549.
Post-Glycosylation Modification of Sialic Acid and Its Role in Virus Pathogenesis.
Park S
Vaccines (Basel). 2019; 7(4).
PMID: 31683930
PMC: 6963189.
DOI: 10.3390/vaccines7040171.