» Articles » PMID: 36145992

Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications

Overview
Publisher MDPI
Date 2022 Sep 23
PMID 36145992
Authors
Affiliations
Soon will be listed here.
Abstract

Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics. Here, we report the methods most frequently used for AMP production and encapsulation of different actives. The technological parameters important in the process of AMP preparation, such as alginate concentration, the type and concentration of other reagents (cross-linking agents, oils, emulsifiers and pH regulators), agitation speed or cross-linking time, are reviewed. Furthermore, the advantages and disadvantages of alginate microparticles as delivery systems are discussed, and an overview of the active ingredients enclosed in the alginate carriers are presented.

Citing Articles

From Molecules to Mind: The Critical Role of Chitosan, Collagen, Alginate, and Other Biopolymers in Neuroprotection and Neurodegeneration.

Kruczkowska W, Galeziewska J, Grabowska K, Gromek P, Czajkowska K, Rybicki M Molecules. 2025; 30(5).

PMID: 40076240 PMC: 11901451. DOI: 10.3390/molecules30051017.


A Promising Approach for the Food Industry: Enhancing Probiotic Viability Through Microencapsulated Synbiotics.

Malos I, Pasarin D, Ghizdareanu A, Frunzareanu B Microorganisms. 2025; 13(2).

PMID: 40005703 PMC: 11858381. DOI: 10.3390/microorganisms13020336.


In Vitro Release Dynamics of Atorvastatin-Loaded Alginate Particles for Enhanced Periodontal Treatment.

Hlawa I, Reske T, Chabanovska O, Scholz M, Vasudevan P, Oschatz S Polymers (Basel). 2025; 17(3).

PMID: 39940629 PMC: 11820141. DOI: 10.3390/polym17030427.


Advancements in Oral Delivery Systems for Probiotics Based on Polysaccharides.

Wang Z, Zhang W, Liang T Polymers (Basel). 2025; 17(2).

PMID: 39861217 PMC: 11768238. DOI: 10.3390/polym17020144.


Enhancing the Solubility and Dissolution of Apigenin: Solid Dispersions Approach.

Rosiak N, Tykarska E, Miklaszewski A, Pietrzak R, Cielecka-Piontek J Int J Mol Sci. 2025; 26(2).

PMID: 39859284 PMC: 11766082. DOI: 10.3390/ijms26020566.


References
1.
Gbassi G, Vandamme T . Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics. 2013; 4(1):149-63. PMC: 3834910. DOI: 10.3390/pharmaceutics4010149. View

2.
Ding W, Shah N . Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci. 2009; 74(2):M100-7. DOI: 10.1111/j.1750-3841.2009.01067.x. View

3.
Liu X, Yu W, Zhang Y, Xue W, Yu W, Xiong Y . Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources. J Microencapsul. 2003; 19(6):775-82. DOI: 10.1080/0265204021000022743. View

4.
Kesselman L, Shinwary S, Selvaganapathy P, Hoare T . Synthesis of monodisperse, covalently cross-linked, degradable "smart" microgels using microfluidics. Small. 2012; 8(7):1092-8. DOI: 10.1002/smll.201102113. View

5.
Safarikova M, Roy I, Gupta M, Safarik I . Magnetic alginate microparticles for purification of alpha-amylases. J Biotechnol. 2003; 105(3):255-60. DOI: 10.1016/j.jbiotec.2003.07.002. View