» Articles » PMID: 36129989

SARS-CoV-2 Disrupts Respiratory Vascular Barriers by Suppressing Claudin-5 Expression

Abstract

In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin-mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2-induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2-induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19.

Citing Articles

Blood-perfused Vessels-on-Chips stimulated with patient plasma recapitulate endothelial activation and microthrombosis in COVID-19.

Weener H, van Haaps T, van Helden R, Albers H, Haverkate R, Middelkamp H Lab Chip. 2025; .

PMID: 40034052 PMC: 11877278. DOI: 10.1039/d4lc00848k.


Claudin-11 plays a pivotal role in the clathrin-mediated endocytosis of influenza A virus.

Yu X, Ni Z, Wang Y, Wang J, Deng G, Shi J Sci China Life Sci. 2025; .

PMID: 39985647 DOI: 10.1007/s11427-024-2856-y.


Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter.

Grewal T, Nguyen M, Buechler C Int J Mol Sci. 2024; 25(19).

PMID: 39408818 PMC: 11477656. DOI: 10.3390/ijms251910489.


Preeclampsia in the Context of COVID-19: Mechanisms, Pathophysiology, and Clinical Outcomes.

Nobrega G, Jones B, Mysorekar I, Costa M Am J Reprod Immunol. 2024; 92(2):e13915.

PMID: 39132825 PMC: 11384281. DOI: 10.1111/aji.13915.


Sex differences in airway disease: estrogen and airway surface liquid dynamics.

Harvey B, McElvaney N Biol Sex Differ. 2024; 15(1):56.

PMID: 39026347 PMC: 11264786. DOI: 10.1186/s13293-024-00633-z.


References
1.
Yang M, Oh B, Yang D, Oh E, Kim Y, Kang K . Ultra- and micro-structural changes of respiratory tracts in SARS-CoV-2 infected Syrian hamsters. Vet Res. 2021; 52(1):121. PMC: 8444536. DOI: 10.1186/s13567-021-00988-w. View

2.
Deguchi S, Tsuda M, Kosugi K, Sakamoto A, Mimura N, Negoro R . Usability of Polydimethylsiloxane-Based Microfluidic Devices in Pharmaceutical Research Using Human Hepatocytes. ACS Biomater Sci Eng. 2021; 7(8):3648-3657. DOI: 10.1021/acsbiomaterials.1c00642. View

3.
Frye M, Dierkes M, Kuppers V, Vockel M, Tomm J, Zeuschner D . Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin. J Exp Med. 2015; 212(13):2267-87. PMC: 4689167. DOI: 10.1084/jem.20150718. View

4.
Torices S, Cabrera R, Stangis M, Naranjo O, Fattakhov N, Teglas T . Expression of SARS-CoV-2-related receptors in cells of the neurovascular unit: implications for HIV-1 infection. J Neuroinflammation. 2021; 18(1):167. PMC: 8319595. DOI: 10.1186/s12974-021-02210-2. View

5.
Pober J, Sessa W . Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007; 7(10):803-15. DOI: 10.1038/nri2171. View