6.
Chiarelli T, Grieshaber N, Omsland A, Remien C, Grieshaber S
. Single-Inclusion Kinetics of Development. mSystems. 2020; 5(5).
PMC: 7567582.
DOI: 10.1128/mSystems.00689-20.
View
7.
Perry L, Su H, Feilzer K, Messer R, Hughes S, Whitmire W
. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. J Immunol. 1999; 162(6):3541-8.
View
8.
Si L, Bai H, Rodas M, Cao W, Oh C, Jiang A
. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021; 5(8):815-829.
PMC: 8387338.
DOI: 10.1038/s41551-021-00718-9.
View
9.
Tang C, Liu C, Maffei B, Niragire B, Cohen H, Kane A
. Primary ectocervical epithelial cells display lower permissivity to Chlamydia trachomatis than HeLa cells and a globally higher pro-inflammatory profile. Sci Rep. 2021; 11(1):5848.
PMC: 7955086.
DOI: 10.1038/s41598-021-85123-7.
View
10.
Luis M, Pereira I, Bugalhao J, Simoes C, Mota C, Romao M
. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Infect Immun. 2023; 91(4):e0040522.
PMC: 10112248.
DOI: 10.1128/iai.00405-22.
View
11.
Sturdevant G, Caldwell H
. Innate immunity is sufficient for the clearance of Chlamydia trachomatis from the female mouse genital tract. Pathog Dis. 2014; 72(1):70-3.
PMC: 4152394.
DOI: 10.1111/2049-632X.12164.
View
12.
Vollmuth N, Schlicker L, Guo Y, Hovhannisyan P, Janaki-Raman S, Kurmasheva N
. c-Myc plays a key role in IFN-γ-induced persistence of . Elife. 2022; 11.
PMC: 9512400.
DOI: 10.7554/eLife.76721.
View
13.
Thompson C, Fu S, Knight M, Thorpe S
. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol. 2020; 8:602646.
PMC: 7758201.
DOI: 10.3389/fbioe.2020.602646.
View
14.
Pal S, Tifrea D, Zhong G, de la Maza L
. Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice. Infect Immun. 2017; 86(1).
PMC: 5736824.
DOI: 10.1128/IAI.00722-17.
View
15.
Hakiem O, Rizvi S, Ramirez C, Tan M
. Euo is a developmental regulator that represses late genes and activates midcycle genes in . mBio. 2023; 14(5):e0046523.
PMC: 10653925.
DOI: 10.1128/mbio.00465-23.
View
16.
Hall J, Schell M, Dessus-Babus S, Moore C, Whittimore J, Sal M
. The multifaceted role of oestrogen in enhancing Chlamydia trachomatis infection in polarized human endometrial epithelial cells. Cell Microbiol. 2011; 13(8):1183-99.
DOI: 10.1111/j.1462-5822.2011.01608.x.
View
17.
Elwell C, Jiang S, Kim J, Lee A, Wittmann T, Hanada K
. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog. 2011; 7(9):e1002198.
PMC: 3164637.
DOI: 10.1371/journal.ppat.1002198.
View
18.
Kessler M, Hoffmann K, Fritsche K, Brinkmann V, Mollenkopf H, Thieck O
. Chronic Chlamydia infection in human organoids increases stemness and promotes age-dependent CpG methylation. Nat Commun. 2019; 10(1):1194.
PMC: 6423033.
DOI: 10.1038/s41467-019-09144-7.
View
19.
Zadora P, Chumduri C, Imami K, Berger H, Mi Y, Selbach M
. Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells. Cell Rep. 2019; 26(5):1286-1302.e8.
DOI: 10.1016/j.celrep.2019.01.006.
View
20.
Mueller K, Wolf K, Fields K
. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis. mBio. 2016; 7(1):e01817-15.
PMC: 4725004.
DOI: 10.1128/mBio.01817-15.
View