» Articles » PMID: 36127319

N6-methyladenosine Modification of Circ_0003215 Suppresses the Pentose Phosphate Pathway and Malignancy of Colorectal Cancer Through the MiR-663b/DLG4/G6PD Axis

Overview
Journal Cell Death Dis
Date 2022 Sep 20
PMID 36127319
Authors
Affiliations
Soon will be listed here.
Abstract

Circular RNAs (circRNAs) are a recently discovered kind of regulatory RNAs that have emerged as critical biomarkers of various types of cancers. Metabolic reprogramming has gradually been identified as a distinct hallmark of cancer cells. The pentose phosphate pathway (PPP) plays an indispensable role in satisfying the bioenergetic and biosynthetic demands of cancer cells. However, little is known about the role of circRNAs and PPP in colorectal cancer (CRC). The novel circ_0003215 was identified at low levels in CRC and was negatively correlated with larger tumor size, higher TNM stage, and lymph node metastasis. The decreased level of circ_0003215 was resulted from the RNA degradation by m6A writer protein YTHDF2. A series of functional assays demonstrated that circ_0003215 inhibited cell proliferation, migration, invasion, and CRC tumor metastasis in vivo and in vitro. Moreover, circ_0003215 regulated the expression of DLG4 via sponging miR-663b, thereby inducing the metabolic reprogramming in CRC. Mechanismly, DLG4 inhibited the PPP through the K48-linked ubiquitination of glucose-6-phosphate dehydrogenase (G6PD). Taken together, we have identified m6A-modified circ_0003215 as a novel regulator of metabolic glucose reprogramming that inhibited the PPP and the malignant phenotype of CRC via the miR-663b/DLG4/G6PD axis.

Citing Articles

Colorectal Cancer: Pathogenesis and Targeted Therapy.

Li J, Pan J, Wang L, Ji G, Dang Y MedComm (2020). 2025; 6(3):e70127.

PMID: 40060193 PMC: 11885891. DOI: 10.1002/mco2.70127.


Immunoregulatory role of exosomal circRNAs in the tumor microenvironment.

Lv C, Chen J, Wang Y, Lin Y Front Oncol. 2025; 15:1453786.

PMID: 40034598 PMC: 11872884. DOI: 10.3389/fonc.2025.1453786.


CircRNAs in Colorectal Cancer: Unveiling Their Roles and Exploring Therapeutic Potential.

Ding Y, Song X, Chen J Biochem Genet. 2025; .

PMID: 40029586 DOI: 10.1007/s10528-025-11068-5.


Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health.

Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R Cell Death Discov. 2025; 11(1):43.

PMID: 39904996 PMC: 11794895. DOI: 10.1038/s41420-025-02324-z.


The Pentose Phosphate Pathway: From Mechanisms to Implications for Gastrointestinal Cancers.

Qiao J, Yu Z, Zhou H, Wang W, Wu H, Ye J Int J Mol Sci. 2025; 26(2).

PMID: 39859324 PMC: 11765532. DOI: 10.3390/ijms26020610.


References
1.
Vander Heiden M, DeBerardinis R . Understanding the Intersections between Metabolism and Cancer Biology. Cell. 2017; 168(4):657-669. PMC: 5329766. DOI: 10.1016/j.cell.2016.12.039. View

2.
Fu Y, Dominissini D, Rechavi G, He C . Gene expression regulation mediated through reversible m⁶A RNA methylation. Nat Rev Genet. 2014; 15(5):293-306. DOI: 10.1038/nrg3724. View

3.
Goodall G, Wickramasinghe V . RNA in cancer. Nat Rev Cancer. 2020; 21(1):22-36. DOI: 10.1038/s41568-020-00306-0. View

4.
Li J, Xu Q, Huang Z, Mao N, Lin Z, Cheng L . CircRNAs: a new target for the diagnosis and treatment of digestive system neoplasms. Cell Death Dis. 2021; 12(2):205. PMC: 7904779. DOI: 10.1038/s41419-021-03495-0. View

5.
Vander Heiden M, Cantley L, Thompson C . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324(5930):1029-33. PMC: 2849637. DOI: 10.1126/science.1160809. View