6.
Schmidt C, Giusto J, Bao A, Hopper A, Matera A
. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 2019; 47(12):6452-6465.
PMC: 6614914.
DOI: 10.1093/nar/gkz311.
View
7.
Cai J, Chen Z, Zhang Y, Wang J, Zhang Z, Wu J
. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via mA modification in hepatocellular carcinoma. Mol Ther Oncolytics. 2022; 24:755-771.
PMC: 8908059.
DOI: 10.1016/j.omto.2022.02.021.
View
8.
Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q
. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022; 21(1):16.
PMC: 8759291.
DOI: 10.1186/s12943-021-01485-6.
View
9.
Liu L, Gu M, Ma J, Wang Y, Li M, Wang H
. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma. Mol Cancer. 2022; 21(1):149.
PMC: 9297645.
DOI: 10.1186/s12943-022-01619-4.
View
10.
Yao B, Zhang Q, Yang Z, An F, Nie H, Wang H
. CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of mA-modified CREB1 mRNA. Mol Cancer. 2022; 21(1):140.
PMC: 9245290.
DOI: 10.1186/s12943-022-01608-7.
View
11.
Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey R
. mA-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 2020; 30(3):211-228.
PMC: 7054367.
DOI: 10.1038/s41422-020-0279-8.
View
12.
Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y
. EIF4A3-Induced circARHGAP29 Promotes Aerobic Glycolysis in Docetaxel-Resistant Prostate Cancer through IGF2BP2/c-Myc/LDHA Signaling. Cancer Res. 2021; 82(5):831-845.
DOI: 10.1158/0008-5472.CAN-21-2988.
View
13.
Li J, Sun D, Pu W, Wang J, Peng Y
. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer. 2020; 6(4):319-336.
DOI: 10.1016/j.trecan.2020.01.012.
View
14.
Liang L, Zhu Y, Li J, Zeng J, Wu L
. ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. J Exp Clin Cancer Res. 2022; 41(1):261.
PMC: 9413927.
DOI: 10.1186/s13046-022-02462-7.
View
15.
Huang C, Liang D, Tatomer D, Wilusz J
. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018; 32(9-10):639-644.
PMC: 6004072.
DOI: 10.1101/gad.314856.118.
View
16.
Li K, Peng Z, Wang R, Li X, Du N, Liu D
. Enhancement of TKI sensitivity in lung adenocarcinoma through m6A-dependent translational repression of Wnt signaling by circ-FBXW7. Mol Cancer. 2023; 22(1):103.
PMC: 10314519.
DOI: 10.1186/s12943-023-01811-0.
View
17.
Luo L, Li P, Xie Q, Wu Y, Qin F, Liao D
. n6-methyladenosine-modified circular RNA family with sequence similarity 126, member A affects cholesterol synthesis and malignant progression of prostate cancer cells by targeting microRNA-505-3p to mediate calnexin. J Cancer. 2024; 15(4):966-980.
PMC: 10788727.
DOI: 10.7150/jca.89135.
View
18.
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X
. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015; 22(3):256-64.
DOI: 10.1038/nsmb.2959.
View
19.
Zhong C, Long Z, Yang T, Wang S, Zhong W, Hu F
. M6A-modified circRBM33 promotes prostate cancer progression via PDHA1-mediated mitochondrial respiration regulation and presents a potential target for ARSI therapy. Int J Biol Sci. 2023; 19(5):1543-1563.
PMC: 10086746.
DOI: 10.7150/ijbs.77133.
View
20.
Yang F, Liu Y, Xiao J, Li B, Chen Y, Hu A
. Circ-CTNNB1 drives aerobic glycolysis and osteosarcoma progression via m6A modification through interacting with RBM15. Cell Prolif. 2022; 56(1):e13344.
DOI: 10.1111/cpr.13344.
View