» Articles » PMID: 36125552

The Multiple Facets of Mitochondrial Regulations Controlling Cellular Thermogenesis

Overview
Publisher Springer
Specialty Biology
Date 2022 Sep 20
PMID 36125552
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.

Citing Articles

Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes.

Chen J, Li H, Liang R, Huang Y, Tang Q Biogerontology. 2024; 26(1):33.

PMID: 39729246 DOI: 10.1007/s10522-024-10175-x.


2,4-Dinitrophenol is toxic on a low caloric diet but extends lifespan of Drosophila melanogaster on nutrient-rich diets without an impact on metabolism.

Strilbytska O, Semaniuk U, Yurkevych I, Berezovskyi V, Glovyak A, Gospodaryov D Biogerontology. 2024; 26(1):27.

PMID: 39702849 DOI: 10.1007/s10522-024-10169-9.


Exploring the Frontiers of Cell Temperature Measurement and Thermogenesis.

Zhu H, Xu H, Zhang Y, Brodsky J, Gablech I, Korabecna M Adv Sci (Weinh). 2024; 12(1):e2402135.

PMID: 39467049 PMC: 11714221. DOI: 10.1002/advs.202402135.


Mild Hyperthermia-Induced Thermogenesis in the Endoplasmic Reticulum Defines Stress Response Mechanisms.

Dukic B, Ruppert Z, Toth M, Hunya A, Czibula A, Biro P Cells. 2024; 13(13.

PMID: 38994992 PMC: 11240596. DOI: 10.3390/cells13131141.


Determinants of thermal homeostasis in the preimplantation embryo: a role for the embryo's central heating system?.

Leese H, Sturmey R J Assist Reprod Genet. 2024; 41(6):1475-1480.

PMID: 38717600 PMC: 11224206. DOI: 10.1007/s10815-024-03130-9.


References
1.
Di X, Wang D, Zhou J, Zhang L, Stenzel M, Su Q . Quantitatively Monitoring Mitochondrial Thermal Dynamics by Upconversion Nanoparticles. Nano Lett. 2021; 21(4):1651-1658. PMC: 7908016. DOI: 10.1021/acs.nanolett.0c04281. View

2.
Mills E, Pierce K, Jedrychowski M, Garrity R, Winther S, Vidoni S . Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature. 2018; 560(7716):102-106. PMC: 7045287. DOI: 10.1038/s41586-018-0353-2. View

3.
Chouchani E, Kazak L, Jedrychowski M, Lu G, Erickson B, Szpyt J . Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 2016; 532(7597):112-6. PMC: 5549630. DOI: 10.1038/nature17399. View

4.
Bertholet A, Kirichok Y . Mitochondrial H Leak and Thermogenesis. Annu Rev Physiol. 2021; 84:381-407. PMC: 8976115. DOI: 10.1146/annurev-physiol-021119-034405. View

5.
ORourke B . Mitochondrial ion channels. Annu Rev Physiol. 2006; 69:19-49. PMC: 2712118. DOI: 10.1146/annurev.physiol.69.031905.163804. View