» Articles » PMID: 34758268

Mitochondrial H Leak and Thermogenesis

Overview
Publisher Annual Reviews
Specialty Physiology
Date 2021 Nov 10
PMID 34758268
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H leak.

Citing Articles

C5aR1-positive adipocytes mediate non-shivering thermogenesis in neonatal mice.

Wang H, Peng X, Yang M, Weng Y, Yang X, Zhan D iScience. 2025; 27(12):111261.

PMID: 39758991 PMC: 11700647. DOI: 10.1016/j.isci.2024.111261.


Nigericin modifies the mechanism of the uncoupling action of bile acids in rat liver mitochondria by converting ΔpH into Δψ.

Pavlova E, Samartsev V, Dubinin M J Bioenerg Biomembr. 2024; 57(1):39-48.

PMID: 39699620 DOI: 10.1007/s10863-024-10048-5.


Molecular basis for thermogenesis and volatile production in the titan arum.

Zulfiqar A, Azhar B, Shakeel S, Thives Santos W, Barry T, Ozimek D PNAS Nexus. 2024; 3(11):pgae492.

PMID: 39544499 PMC: 11563039. DOI: 10.1093/pnasnexus/pgae492.


Integration of bile proteomics and metabolomics analyses reveals novel insights into different types of gallstones in a high-altitude area.

Jing X, Ma Y, Li D, Zhang T, Xiang H, Xu F BMC Gastroenterol. 2024; 24(1):330.

PMID: 39350090 PMC: 11440720. DOI: 10.1186/s12876-024-03422-5.


Ling-gui-zhu-gan promotes adipocytes browning via targeting the miR-27b/PRDM16 pathway in 3T3-L1 cells.

Ye Z, Zhao Y, Cui Y, Xu B, Wang F, Zhao D Front Pharmacol. 2024; 15:1386794.

PMID: 39206264 PMC: 11349548. DOI: 10.3389/fphar.2024.1386794.


References
1.
Chouchani E, Kazak L, Jedrychowski M, Lu G, Erickson B, Szpyt J . Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 2016; 532(7597):112-6. PMC: 5549630. DOI: 10.1038/nature17399. View

2.
Nicholls D . A history of UCP1. Biochem Soc Trans. 2001; 29(Pt 6):751-5. DOI: 10.1042/bst0290751. View

3.
Zhu D, Lai Y, Shelat P, Hu C, Sun G, Lee J . Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci. 2006; 26(43):11111-9. PMC: 6674660. DOI: 10.1523/JNEUROSCI.3505-06.2006. View

4.
Lindberg O, de Pierre J, Rylander E, Afzelius B . Studies of the mitochondrial energy-transfer system of brown adipose tissue. J Cell Biol. 1967; 34(1):293-310. PMC: 2107234. DOI: 10.1083/jcb.34.1.293. View

5.
Pagliarini D, Calvo S, Chang B, Sheth S, Vafai S, Ong S . A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008; 134(1):112-23. PMC: 2778844. DOI: 10.1016/j.cell.2008.06.016. View