» Articles » PMID: 36037474

Collective Mid-Infrared Vibrations in Surface-Enhanced Raman Scattering

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2022 Aug 29
PMID 36037474
Authors
Affiliations
Soon will be listed here.
Abstract

Surface-enhanced Raman scattering (SERS) is typically assumed to occur at individual molecules neglecting intermolecular vibrational coupling. Here, we show instead how collective vibrations from infrared (IR) coupled dipoles are seen in SERS from molecular monolayers. Mixing IR-active molecules with IR-inactive spacer molecules controls the intermolecular separation. Intermolecular coupling leads to vibrational frequency upshifts up to 8 cm, tuning with the mixing fraction and IR dipole strength, in excellent agreement with microscopic models and density functional theory. These cooperative frequency shifts can be used as a ruler to measure intermolecular distance and disorder with angstrom resolution. We demonstrate this for photochemical reactions of 4-nitrothiophenol, which depletes the number of neighboring IR-active molecules and breaks the collective vibration, enabling direct tracking of the reaction. Collective molecular vibrations reshape SERS spectra and need to be considered in the analysis of vibrational spectra throughout analytical chemistry and sensing.

Citing Articles

Single-molecule-level detection of interfacial molecular structures and ultrafast dynamics.

Zheng X, Tan J, Pei Q, Luo Y, Ye S Chem Sci. 2025; .

PMID: 40007659 PMC: 11848740. DOI: 10.1039/d4sc07863b.


Nanocavities for Molecular Optomechanics: Their Fundamental Description and Applications.

Roelli P, Hu H, Verhagen E, Reich S, Galland C ACS Photonics. 2024; 11(11):4486-4501.

PMID: 39584033 PMC: 11583369. DOI: 10.1021/acsphotonics.4c01548.


Local electric field in nanocavities dictates the vibrational relaxation dynamics of interfacial molecules.

Zheng X, Pei Q, Tan J, Bai S, Luo Y, Ye S Chem Sci. 2024; 15(29):11507-11514.

PMID: 39055024 PMC: 11268483. DOI: 10.1039/d4sc02463j.


Extensive photochemical restructuring of molecule-metal surfaces under room light.

Guo C, Benzie P, Hu S, de Nijs B, Miele E, Elliott E Nat Commun. 2024; 15(1):1928.

PMID: 38431651 PMC: 10908804. DOI: 10.1038/s41467-024-46125-x.

References
1.
Donges S, Cline R, Zeltmann S, Nishida J, Metzger B, Minor A . Multidimensional Nano-Imaging of Structure, Coupling, and Disorder in Molecular Materials. Nano Lett. 2021; 21(15):6463-6470. DOI: 10.1021/acs.nanolett.1c01369. View

2.
Baumberg J, Aizpurua J, Mikkelsen M, Smith D . Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019; 18(7):668-678. DOI: 10.1038/s41563-019-0290-y. View

3.
Gray T, Nishida J, Johnson S, Raschke M . 2D Vibrational Exciton Nanoimaging of Domain Formation in Self-Assembled Monolayers. Nano Lett. 2021; 21(13):5754-5759. DOI: 10.1021/acs.nanolett.1c01515. View

4.
Corma A, Serna P . Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science. 2006; 313(5785):332-4. DOI: 10.1126/science.1128383. View

5.
Wang C, OCallahan B, Kurouski D, Krayev A, El-Khoury P . The Prevalence of Anions at Plasmonic Nanojunctions: A Closer Look at -Nitrothiophenol. J Phys Chem Lett. 2020; 11(10):3809-3814. DOI: 10.1021/acs.jpclett.0c01006. View