» Articles » PMID: 27223478

SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but So Does Shape

Overview
Specialty Chemistry
Date 2016 May 26
PMID 27223478
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.

Citing Articles

Design and Optimization of a Gold and Silver Nanoparticle-Based SERS Biosensing Platform.

Saha S, Sachdev M, Mitra S Sensors (Basel). 2025; 25(4).

PMID: 40006394 PMC: 11859697. DOI: 10.3390/s25041165.


Electronically Perturbed Vibrational Excitations of the Luminescing Stable Blatter Radical.

Bar-David J, Daaoub A, Chen S, Sibug-Torres S, Rocchetti S, Kang G ACS Nano. 2025; 19(8):7650-7660.

PMID: 39981951 PMC: 11887450. DOI: 10.1021/acsnano.4c09661.


The Impact of Electric Fields on Processes at Electrode Interfaces.

Long Z, Meng J, Weddle L, Videla P, Menzel J, Cabral D Chem Rev. 2025; 125(3):1604-1628.

PMID: 39818737 PMC: 11826898. DOI: 10.1021/acs.chemrev.4c00487.


Advances in Surface-Enhanced Raman Spectroscopy for Urinary Metabolite Analysis: Exploiting Noble Metal Nanohybrids.

Zhao N, Shi P, Wang Z, Sun Z, Sun K, Ye C Biosensors (Basel). 2024; 14(12).

PMID: 39727829 PMC: 11674540. DOI: 10.3390/bios14120564.


On the excitation and radiative decay rates of plasmonic nanoantennas.

Bedingfield K, Demetriadou A Nanophotonics. 2024; 11(10):2271-2281.

PMID: 39678087 PMC: 11635946. DOI: 10.1515/nanoph-2022-0015.


References
1.
Jackson J, Halas N . Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci U S A. 2004; 101(52):17930-5. PMC: 539806. DOI: 10.1073/pnas.0408319102. View

2.
Alexander K, Skinner K, Zhang S, Wei H, Lopez R . Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett. 2010; 10(11):4488-93. DOI: 10.1021/nl1023172. View

3.
Hatab N, Hsueh C, Gaddis A, Retterer S, Li J, Eres G . Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010; 10(12):4952-5. DOI: 10.1021/nl102963g. View

4.
Kahraman M, Daggumati P, Kurtulus O, Seker E, Wachsmann-Hogiu S . Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci Rep. 2013; 3:3396. PMC: 3844966. DOI: 10.1038/srep03396. View

5.
Benz F, Tserkezis C, Herrmann L, de Nijs B, Sanders A, Sigle D . Nanooptics of molecular-shunted plasmonic nanojunctions. Nano Lett. 2014; 15(1):669-74. PMC: 4312133. DOI: 10.1021/nl5041786. View