Efficient Energy Transport in an Organic Semiconductor Mediated by Transient Exciton Delocalization
Authors
Affiliations
Efficient energy transport is desirable in organic semiconductor (OSC) devices. However, photogenerated excitons in OSC films mostly occupy highly localized states, limiting exciton diffusion coefficients to below ~10 cm/s and diffusion lengths below ~50 nm. We use ultrafast optical microscopy and nonadiabatic molecular dynamics simulations to study well-ordered poly(3-hexylthiophene) nanofiber films prepared using living crystallization-driven self-assembly, and reveal a highly efficient energy transport regime: transient exciton delocalization, where energy exchange with vibrational modes allows excitons to temporarily re-access spatially extended states under equilibrium conditions. We show that this enables exciton diffusion constants up to 1.1 ± 0.1 cm/s and diffusion lengths of 300 ± 50 nm. Our results reveal the dynamic interplay between localized and delocalized exciton configurations at equilibrium conditions, calling for a re-evaluation of exciton dynamics and suggesting design rules to engineer efficient energy transport in OSC device architectures not based on restrictive bulk heterojunctions.
Microscopic crystallographic analysis of dislocations in molecular crystals.
Pham S, Koniuch N, Wynne E, Brown A, Collins S Nat Mater. 2025; .
PMID: 40033107 DOI: 10.1038/s41563-025-02138-5.
Photochemical initiation of polariton-mediated exciton propagation.
Sokolovskii I, Groenhof G Nanophotonics. 2024; 13(14):2687-2694.
PMID: 39678664 PMC: 11636319. DOI: 10.1515/nanoph-2023-0684.
Nanostructure and Photovoltaic Potential of Plasmonic Nanofibrous Active Layers.
Schofield R, Maciejewska B, Elmestekawy K, Woolley J, Tebbutt G, Danaie M Small. 2024; 21(3):e2409269.
PMID: 39578239 PMC: 11753493. DOI: 10.1002/smll.202409269.
Thermoelectric transport in molecular crystals driven by gradients of thermal electronic disorder.
Elsner J, Xu Y, Goldberg E, Ivanovic F, Dines A, Giannini S Sci Adv. 2024; 10(43):eadr1758.
PMID: 39441918 PMC: 11498209. DOI: 10.1126/sciadv.adr1758.
Cerda J, Orti E, Beljonne D, Arago J J Phys Chem Lett. 2024; 15(30):7814-7821.
PMID: 39052305 PMC: 11299171. DOI: 10.1021/acs.jpclett.4c01520.