» Articles » PMID: 36030235

The KU-PARP14 Axis Differentially Regulates DNA Resection at Stalled Replication Forks by MRE11 and EXO1

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Aug 27
PMID 36030235
Authors
Affiliations
Soon will be listed here.
Abstract

Suppression of nascent DNA degradation has emerged as an essential role of the BRCA pathway in genome protection. In BRCA-deficient cells, the MRE11 nuclease is responsible for both resection of reversed replication forks, and accumulation of single stranded DNA gaps behind forks. Here, we show that the mono-ADP-ribosyltransferase PARP14 is a critical co-factor of MRE11. PARP14 is recruited to nascent DNA upon replication stress in BRCA-deficient cells, and through its catalytic activity, mediates the engagement of MRE11. Loss or inhibition of PARP14 suppresses MRE11-mediated fork degradation and gap accumulation, and promotes genome stability and chemoresistance of BRCA-deficient cells. Moreover, we show that the KU complex binds reversed forks and protects them against EXO1-catalyzed degradation. KU recruits the PARP14-MRE11 complex, which initiates partial resection to release KU and allow long-range resection by EXO1. Our work identifies a multistep process of nascent DNA processing at stalled replication forks in BRCA-deficient cells.

Citing Articles

PARG inhibitor sensitivity correlates with accumulation of single-stranded DNA gaps in preclinical models of ovarian cancer.

Ravindranathan R, Somuncu O, da Costa A, Mukkavalli S, Lamarre B, Nguyen H Proc Natl Acad Sci U S A. 2024; 121(47):e2413954121.

PMID: 39546575 PMC: 11588084. DOI: 10.1073/pnas.2413954121.


CRISPR knockout genome-wide screens identify the HELQ-RAD52 axis in regulating the repair of cisplatin-induced single-stranded DNA gaps.

Pale L, Khatib J, Nusawardhana A, Straka J, Nicolae C, Moldovan G Nucleic Acids Res. 2024; 52(22):13832-13848.

PMID: 39530221 PMC: 11662931. DOI: 10.1093/nar/gkae998.


PARP enzymes and mono-ADP-ribosylation: advancing the connection from interferon-signalling to cancer biology.

Morone B, Grimaldi G Expert Rev Mol Med. 2024; 26:e17.

PMID: 39189367 PMC: 11440612. DOI: 10.1017/erm.2024.13.


Exo1 cooperates with Tel1/ATM in promoting recombination events at DNA replication forks.

Galli M, Frigerio C, Colombo C, Casari E, Longhese M, Clerici M iScience. 2024; 27(8):110410.

PMID: 39081288 PMC: 11284563. DOI: 10.1016/j.isci.2024.110410.


PARP10 promotes the repair of nascent strand DNA gaps through RAD18 mediated translesion synthesis.

Khatib J, Dhoonmoon A, Moldovan G, Nicolae C Nat Commun. 2024; 15(1):6197.

PMID: 39043663 PMC: 11266678. DOI: 10.1038/s41467-024-50429-3.


References
1.
Jensen K, Russell P . Ctp1-dependent clipping and resection of DNA double-strand breaks by Mre11 endonuclease complex are not genetically separable. Nucleic Acids Res. 2016; 44(17):8241-9. PMC: 5041466. DOI: 10.1093/nar/gkw557. View

2.
Goenka S, Cho S, Boothby M . Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J Biol Chem. 2007; 282(26):18732-9. DOI: 10.1074/jbc.M611283200. View

3.
Balestrini A, Ristic D, Dionne I, Liu X, Wyman C, Wellinger R . The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks. Cell Rep. 2013; 3(6):2033-45. PMC: 3815622. DOI: 10.1016/j.celrep.2013.05.026. View

4.
Clements K, Thakar T, Nicolae C, Liang X, Wang H, Moldovan G . Loss of E2F7 confers resistance to poly-ADP-ribose polymerase (PARP) inhibitors in BRCA2-deficient cells. Nucleic Acids Res. 2018; 46(17):8898-8907. PMC: 6158596. DOI: 10.1093/nar/gky657. View

5.
Paes Dias M, Tripathi V, van der Heijden I, Cong K, Manolika E, Bhin J . Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps. Mol Cell. 2021; 81(22):4692-4708.e9. PMC: 9098260. DOI: 10.1016/j.molcel.2021.09.005. View