» Articles » PMID: 36028220

Shaping Neonatal Immunization by Tuning the Delivery of Synergistic Adjuvants Via Nanocarriers

Abstract

Adjuvanted nanocarrier-based vaccines hold substantial potential for applications in novel early-life immunization strategies. Here, via mouse and human age-specific in vitro modeling, we identified the combination of a small-molecule STING agonist (2'3'-cyclic GMP-AMP, cGAMP) and a TLR7/8 agonist (CL075) to drive the synergistic activation of neonatal dendritic cells and precision CD4 T-helper (Th) cell expansion via the IL-12/IFNγ axis. We further demonstrate that the vaccination of neonatal mice with quadrivalent influenza recombinant hemagglutinin (rHA) and an admixture of two polymersome (PS) nanocarriers separately encapsulating cGAMP (cGAMP-PS) and CL075 (CL075-PS) drove robust Th1 bias, high frequency of T follicular helper (T) cells, and germinal center (GC) B cells along with the IgG2c-skewed humoral response in vivo. Dual-loaded cGAMP/CL075-PSs did not outperform admixed cGAMP-PS and CL075-PS in vivo. These data validate an optimally designed adjuvantation system via age-selected small-molecule synergy and a multicomponent nanocarrier formulation as an effective approach to induce type 1 immune responses in early life.

Citing Articles

The BNT162b2 mRNA vaccine demonstrates reduced age-associated T1 support and .

Brook B, Checkervarty A, Barman S, Sweitzer C, Bosco A, Sherman A iScience. 2024; 27(11):111055.

PMID: 39569372 PMC: 11576392. DOI: 10.1016/j.isci.2024.111055.


From hit to vial: Precision discovery and development of an imidazopyrimidine TLR7/8 agonist adjuvant formulation.

Soni D, Borriello F, Scott D, Feru F, DeLeon M, Brightman S Sci Adv. 2024; 10(27):eadg3747.

PMID: 38959314 PMC: 11221515. DOI: 10.1126/sciadv.adg3747.


Immune profiling of age and adjuvant-specific activation of human blood mononuclear cells in vitro.

Schuller S, Barman S, Mendez-Giraldez R, Soni D, Daley J, Baden L Commun Biol. 2024; 7(1):709.

PMID: 38851856 PMC: 11162429. DOI: 10.1038/s42003-024-06390-4.


A Biomimetic Multi-Component Subunit Vaccine via Ratiometric Loading of Hierarchical Hydrogels.

Du F, Yuk S, Qian Y, Vincent M, Bobbala S, Abbott T Res Sq. 2024; .

PMID: 38746232 PMC: 11092859. DOI: 10.21203/rs.3.rs-4177821/v1.


A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.

Baljon J, Kwiatkowski A, Pagendarm H, Stone P, Kumar A, Bharti V ACS Nano. 2024; 18(9):6845-6862.

PMID: 38386282 PMC: 10919087. DOI: 10.1021/acsnano.3c04471.


References
1.
Merad M, Sathe P, Helft J, Miller J, Mortha A . The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013; 31:563-604. PMC: 3853342. DOI: 10.1146/annurev-immunol-020711-074950. View

2.
Leventhal D, Sokolovska A, Li N, Plescia C, Kolodziej S, Gallant C . Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat Commun. 2020; 11(1):2739. PMC: 7264239. DOI: 10.1038/s41467-020-16602-0. View

3.
Van Herck S, Feng B, Tang L . Delivery of STING agonists for adjuvanting subunit vaccines. Adv Drug Deliv Rev. 2021; 179:114020. DOI: 10.1016/j.addr.2021.114020. View

4.
Dowling D, Hamilton C, ONeill S . A comparative analysis of cytokine responses, cell surface marker expression and MAPKs in DCs matured with LPS compared with a panel of TLR ligands. Cytokine. 2008; 41(3):254-62. DOI: 10.1016/j.cyto.2007.11.020. View

5.
Ugolini M, Gerhard J, Burkert S, Jensen K, Georg P, Ebner F . Recognition of microbial viability via TLR8 drives T cell differentiation and vaccine responses. Nat Immunol. 2018; 19(4):386-396. DOI: 10.1038/s41590-018-0068-4. View