Mundra S, Kabra A
Biomolecules. 2024; 14(6).
PMID: 38927071
PMC: 11202043.
DOI: 10.3390/biom14060668.
Kumar P, Roy A, Mukul S, Singh A, Singh D, Nalli A
Elife. 2024; 12.
PMID: 38372335
PMC: 10942605.
DOI: 10.7554/eLife.92827.
Naclerio G, Onyedibe K, Karanja C, Aryal U, Sintim H
ACS Infect Dis. 2022; 8(4):865-877.
PMID: 35297603
PMC: 9188027.
DOI: 10.1021/acsinfecdis.1c00613.
Muller C, Crowe-McAuliffe C, Wilson D
Front Microbiol. 2021; 12:652980.
PMID: 33815344
PMC: 8012679.
DOI: 10.3389/fmicb.2021.652980.
Mazeed M, Singh R, Kumar P, Roy A, Raman B, Kruparani S
Sci Adv. 2021; 7(6).
PMID: 33536220
PMC: 7857688.
DOI: 10.1126/sciadv.abe8890.
Unraveling the stereochemical and dynamic aspects of the catalytic site of bacterial peptidyl-tRNA hydrolase.
Kabra A, Shahid S, Pal R, Yadav R, Pulavarti S, Jain A
RNA. 2017; 23(2):202-216.
PMID: 28096445
PMC: 5238795.
DOI: 10.1261/rna.057620.116.
Crystal structure of peptidyl-tRNA hydrolase from a Gram-positive bacterium, Streptococcus pyogenes at 2.19 Å resolution shows the closed structure of the substrate-binding cleft.
Singh A, Gautam L, Sinha M, Bhushan A, Kaur P, Sharma S
FEBS Open Bio. 2014; 4:915-22.
PMID: 25389518
PMC: 4226762.
DOI: 10.1016/j.fob.2014.10.010.
Structural basis for the substrate recognition and catalysis of peptidyl-tRNA hydrolase.
Ito K, Murakami R, Mochizuki M, Qi H, Shimizu Y, Miura K
Nucleic Acids Res. 2012; 40(20):10521-31.
PMID: 22923517
PMC: 3488237.
DOI: 10.1093/nar/gks790.
Structures of new crystal forms of Mycobacterium tuberculosis peptidyl-tRNA hydrolase and functionally important plasticity of the molecule.
Selvaraj M, Ahmad R, Varshney U, Vijayan M
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012; 68(Pt 2):124-8.
PMID: 22297982
PMC: 3274386.
DOI: 10.1107/S1744309111052341.
Crystallization and preliminary X-ray analysis of peptidyl-tRNA hydrolase from Escherichia coli in complex with the acceptor-TΨC domain of tRNA.
Ito K, Qi H, Shimizu Y, Murakami R, Miura K, Ueda T
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011; 67(Pt 12):1566-9.
PMID: 22139168
PMC: 3232141.
DOI: 10.1107/S1744309111038383.
Evidence of bar minigene expression and tRNA2Ile sequestration as peptidyl-tRNA2Ile during lambda bacteriophage development.
Oviedo de Anda N, Kameyama L, Galindo J, Guarneros G, Hernandez-Sanchez J
J Bacteriol. 2004; 186(16):5533-7.
PMID: 15292158
PMC: 490872.
DOI: 10.1128/JB.186.16.5533-5537.2004.
lambda bar minigene-mediated inhibition of protein synthesis involves accumulation of peptidyl-tRNA and starvation for tRNA.
Hernandez-Sanchez J, Valadez J, Herrera J, Ontiveros C, Guarneros G
EMBO J. 1998; 17(13):3758-65.
PMID: 9649445
PMC: 1170711.
DOI: 10.1093/emboj/17.13.3758.
Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase.
Schmitt E, Mechulam Y, Fromant M, Plateau P, Blanquet S
EMBO J. 1997; 16(15):4760-9.
PMID: 9303320
PMC: 1170102.
DOI: 10.1093/emboj/16.15.4760.
The growth defect in Escherichia coli deficient in peptidyl-tRNA hydrolase is due to starvation for Lys-tRNA(Lys).
Mora L, Guarneros G, Buckingham R
EMBO J. 1996; 15(11):2826-33.
PMID: 8654380
PMC: 450220.
Translation arrest by oligodeoxynucleotides complementary to mRNA coding sequences yields polypeptides of predetermined length.
Haeuptle M, Frank R, Dobberstein B
Nucleic Acids Res. 1986; 14(3):1427-48.
PMID: 3633502
PMC: 339515.
DOI: 10.1093/nar/14.3.1427.
Natural premature protein synthesis termination can be reduced in Escherichia coli by decreased translation rates.
Atherly A
Mol Gen Genet. 1979; 175(3):305-11.
PMID: 392230
DOI: 10.1007/BF00397230.