» Articles » PMID: 36003396

Roles and Functions of SARS-CoV-2 Proteins in Host Immune Evasion

Overview
Journal Front Immunol
Date 2022 Aug 25
PMID 36003396
Authors
Affiliations
Soon will be listed here.
Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the host immune system through a variety of regulatory mechanisms. The genome of SARS-CoV-2 encodes 16 non-structural proteins (NSPs), four structural proteins, and nine accessory proteins that play indispensable roles to suppress the production and signaling of type I and III interferons (IFNs). In this review, we discussed the functions and the underlying mechanisms of different proteins of SARS-CoV-2 that evade the host immune system by suppressing the IFN-β production and TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)/signal transducer and activator of transcription (STAT)1 and STAT2 phosphorylation. We also described different viral proteins inhibiting the nuclear translocation of IRF3, nuclear factor-κB (NF-κB), and STATs. To date, the following proteins of SARS-CoV-2 including NSP1, NSP6, NSP8, NSP12, NSP13, NSP14, NSP15, open reading frame (ORF)3a, ORF6, ORF8, ORF9b, ORF10, and Membrane (M) protein have been well studied. However, the detailed mechanisms of immune evasion by NSP5, ORF3b, ORF9c, and Nucleocapsid (N) proteins are not well elucidated. Additionally, we also elaborated the perspectives of SARS-CoV-2 proteins.

Citing Articles

Computational and evaluation of sumac-derived Rutan compounds towards Sars-CoV-2 M inhibition.

Kayumov M, Marimuthu P, Razzokov J, Mukhamedov N, Asrorov A, Berdiev N Front Pharmacol. 2025; 16:1518463.

PMID: 39968179 PMC: 11832515. DOI: 10.3389/fphar.2025.1518463.


Strategies Used by SARS-CoV-2 to Evade the Innate Immune System in an Evolutionary Perspective.

Fan H, Tian M, Liu S, Ye C, Li Z, Wu K Pathogens. 2025; 13(12.

PMID: 39770376 PMC: 11677916. DOI: 10.3390/pathogens13121117.


Amino acid T25 in the substrate-binding domain of SARS-CoV-2 nsp5 is involved in viral replication in the mouse lung.

Sugiura Y, Shimizu K, Takahashi T, Ueno S, Tanigou H, Amarbayasgalan S PLoS One. 2024; 19(12):e0312800.

PMID: 39642113 PMC: 11623800. DOI: 10.1371/journal.pone.0312800.


Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool.

Beltran J, Belen L, Yanez A, Jimenez L BMC Bioinformatics. 2024; 25(1):351.

PMID: 39522017 PMC: 11550529. DOI: 10.1186/s12859-024-05972-7.


Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression.

Medina M, Fuentes-Villalobos F, Quevedo C, Aguilera F, Riquelme R, Rioseco M Elife. 2024; 13.

PMID: 39470726 PMC: 11521369. DOI: 10.7554/eLife.94242.


References
1.
Sparrer K, Gableske S, Zurenski M, Parker Z, Full F, Baumgart G . TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat Microbiol. 2017; 2(11):1543-1557. PMC: 5658249. DOI: 10.1038/s41564-017-0017-2. View

2.
Amarilla A, Sng J, Parry R, Deerain J, Potter J, Setoh Y . A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses. Nat Commun. 2021; 12(1):3431. PMC: 8187723. DOI: 10.1038/s41467-021-23779-5. View

3.
Vkovski P, Kratzel A, Steiner S, Stalder H, Thiel V . Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2020; 19(3):155-170. PMC: 7592455. DOI: 10.1038/s41579-020-00468-6. View

4.
Wang W, Zhou Z, Xiao X, Tian Z, Dong X, Wang C . SARS-CoV-2 nsp12 attenuates type I interferon production by inhibiting IRF3 nuclear translocation. Cell Mol Immunol. 2021; 18(4):945-953. PMC: 7907794. DOI: 10.1038/s41423-020-00619-y. View

5.
Rui Y, Su J, Shen S, Hu Y, Huang D, Zheng W . Unique and complementary suppression of cGAS-STING and RNA sensing- triggered innate immune responses by SARS-CoV-2 proteins. Signal Transduct Target Ther. 2021; 6(1):123. PMC: 7958565. DOI: 10.1038/s41392-021-00515-5. View