» Articles » PMID: 35969857

ORP5 and ORP8 Orchestrate Lipid Droplet Biogenesis and Maintenance at ER-mitochondria Contact Sites

Abstract

Lipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the endoplasmic reticulum (ER). The ER protein seipin, localizing at ER-LD junctions, controls LD nucleation and growth. However, how LD biogenesis is spatially and temporally coordinated remains elusive. Here, we show that the lipid transfer proteins ORP5 and ORP8 control LD biogenesis at mitochondria-associated ER membrane (MAM) subdomains, enriched in phosphatidic acid. We found that ORP5/8 regulates seipin recruitment to these MAM-LD contacts, and their loss impairs LD biogenesis. Importantly, the integrity of ER-mitochondria contact sites is crucial for ORP5/8 function in regulating seipin-mediated LD biogenesis. Our study uncovers an unprecedented ORP5/8 role in orchestrating LD biogenesis and maturation at MAMs and brings novel insights into the metabolic crosstalk between mitochondria, ER, and LDs at the membrane contact sites.

Citing Articles

Structural and functional studies of the VAPB-PTPIP51 ER-mitochondria tethering proteins in neurodegenerative diseases.

Blair K, Martinez-Serra R, Gosset P, Martin-Guerrero S, Morotz G, Atherton J Acta Neuropathol Commun. 2025; 13(1):49.

PMID: 40045432 PMC: 11881430. DOI: 10.1186/s40478-025-01964-7.


Molecular characterization underlying IFN-α2 treatment in polycythemia vera: a transcriptomic overview.

Liu F, Li K Mol Cell Biochem. 2025; .

PMID: 40029555 DOI: 10.1007/s11010-025-05238-7.


Ultrastructure analysis of mitochondria, lipid droplet and sarcoplasmic reticulum apposition in human heart failure.

Latchman N, Stevens T, Bedi K, Prosser B, Margulies K, Elrod J bioRxiv. 2025; .

PMID: 39975328 PMC: 11838275. DOI: 10.1101/2025.01.29.635600.


Targeting membrane contact sites to mediate lipid dynamics: innovative cancer therapies.

Wang J, Wang M, Zeng X, Li Y, Lei L, Chen C Cell Commun Signal. 2025; 23(1):89.

PMID: 39955542 PMC: 11830217. DOI: 10.1186/s12964-025-02089-z.


Trafficking in cancer: from gene deregulation to altered organelles and emerging biophysical properties.

Patat J, Schauer K, Lachuer H Front Cell Dev Biol. 2025; 12:1491304.

PMID: 39902278 PMC: 11788300. DOI: 10.3389/fcell.2024.1491304.


References
1.
Thiam A, Farese Jr R, Walther T . The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol. 2013; 14(12):775-86. PMC: 4526153. DOI: 10.1038/nrm3699. View

2.
Ajjaji D, Ben Mbarek K, Mimmack M, England C, Herscovitz H, Dong L . Dual binding motifs underpin the hierarchical association of perilipins1-3 with lipid droplets. Mol Biol Cell. 2019; 30(5):703-716. PMC: 6589688. DOI: 10.1091/mbc.E18-08-0534. View

3.
Grippa A, Buxo L, Mora G, Funaya C, Idrissi F, Mancuso F . The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol. 2015; 211(4):829-44. PMC: 4657162. DOI: 10.1083/jcb.201502070. View

4.
Dickson E, Hille B . Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J. 2019; 476(1):1-23. PMC: 6342281. DOI: 10.1042/BCJ20180022. View

5.
Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P . Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol. 2008; 180(3):473-82. PMC: 2234226. DOI: 10.1083/jcb.200711136. View