» Articles » PMID: 35949297

MRNA-based Therapy Proves Superior to the Standard of Care for Treating Hereditary Tyrosinemia 1 in a Mouse Model

Abstract

Hereditary tyrosinemia type 1 is an inborn error of amino acid metabolism characterized by deficiency of fumarylacetoacetate hydrolase (FAH). Only limited treatment options (e.g., oral nitisinone) are available. Patients must adhere to a strict diet and face a life-long risk of complications, including liver cancer and progressive neurocognitive decline. There is a tremendous need for innovative therapies that standardize metabolite levels and promise normal development. Here, we describe an mRNA-based therapeutic approach that rescues -deficient mice, a well-established tyrosinemia model. Repeated intravenous or intramuscular administration of lipid nanoparticle-formulated human mRNA resulted in FAH protein synthesis in deficient mouse livers, stabilized body weight, normalized pathologic increases in metabolites after nitisinone withdrawal, and prevented early death. Dose reduction and extended injection intervals proved therapeutically effective. These results provide proof of concept for an mRNA-based therapeutic approach to treating hereditary tyrosinemia type 1 that is superior to the standard of care.

Citing Articles

Encapsulation of Dexamethasone into mRNA-Lipid Nanoparticles Is a Promising Approach for the Development of Liver-Targeted Anti-Inflammatory Therapies.

Berti I, Gambaro R, Limeres M, Huck-Iriart C, Svensson M, Fraude-El Ghazi S Int J Mol Sci. 2024; 25(20).

PMID: 39457035 PMC: 11508592. DOI: 10.3390/ijms252011254.


Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications.

Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati F, Behdani M Mol Ther Nucleic Acids. 2024; 35(3):102313.

PMID: 39281702 PMC: 11402252. DOI: 10.1016/j.omtn.2024.102313.


Optimizing mRNA-Loaded Lipid Nanoparticles as a Potential Tool for Protein-Replacement Therapy.

Gambaro R, Berti I, Limeres M, Huck-Iriart C, Svensson M, Fraude S Pharmaceutics. 2024; 16(6).

PMID: 38931892 PMC: 11207542. DOI: 10.3390/pharmaceutics16060771.


Designing molecules: directing stem cell differentiation.

Thanaskody K, Natashah F, Nordin F, Wan Kamarul Zaman W, Tye G Front Bioeng Biotechnol. 2024; 12:1396405.

PMID: 38803845 PMC: 11129639. DOI: 10.3389/fbioe.2024.1396405.


Co-administration of an effector antibody enhances the half-life and therapeutic potential of RNA-encoded nanobodies.

Thran M, Ponisch M, Danz H, Horscroft N, Ichtchenko K, Tzipori S Sci Rep. 2023; 13(1):14632.

PMID: 37670025 PMC: 10480410. DOI: 10.1038/s41598-023-41092-7.


References
1.
Holme E, Lindstedt S . Nontransplant treatment of tyrosinemia. Clin Liver Dis. 2001; 4(4):805-14. DOI: 10.1016/s1089-3261(05)70142-2. View

2.
Wu G, Liu N, Rittelmeyer I, Sharma A, Sgodda M, Zaehres H . Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol. 2011; 9(7):e1001099. PMC: 3134447. DOI: 10.1371/journal.pbio.1001099. View

3.
Lindstedt S, Holme E, Lock E, Hjalmarson O, Strandvik B . Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992; 340(8823):813-7. DOI: 10.1016/0140-6736(92)92685-9. View

4.
Maier M, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W . Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013; 21(8):1570-8. PMC: 3734658. DOI: 10.1038/mt.2013.124. View

5.
Dawson C, Ramachandran R, Safdar S, Murphy E, Swayne O, Katz J . Severe neurological crisis in adult patients with Tyrosinemia type 1. Ann Clin Transl Neurol. 2020; 7(9):1732-1737. PMC: 7480904. DOI: 10.1002/acn3.51160. View