» Articles » PMID: 29507093

Cas9-nickase-mediated Genome Editing Corrects Hereditary Tyrosinemia in Rats

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2018 Mar 7
PMID 29507093
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Hereditary tyrosinemia type I (HTI) is a metabolic genetic disorder caused by mutation of fumarylacetoacetate hydrolase (FAH). Because of the accumulation of toxic metabolites, HTI causes severe liver cirrhosis, liver failure, and even hepatocellular carcinoma. HTI is an ideal model for gene therapy, and several strategies have been shown to ameliorate HTI symptoms in animal models. Although CRISPR/Cas9-mediated genome editing is able to correct the mutation in mouse models, WT Cas9 induces numerous undesired mutations that have raised safety concerns for clinical applications. To develop a new method for gene correction with high fidelity, we generated a mutant rat model to investigate whether Cas9 nickase (Cas9n)-mediated genome editing can efficiently correct the First, we confirmed that Cas9n rarely induces indels in both on-target and off-target sites in cell lines. Using WT Cas9 as a positive control, we delivered Cas9n and the repair donor template/single guide (sg)RNA through adenoviral vectors into HTI rats. Analyses of the initial genome editing efficiency indicated that only WT Cas9 but not Cas9n causes indels at the on-target site in the liver tissue. After receiving either Cas9n or WT Cas9-mediated gene correction therapy, HTI rats gained weight steadily and survived. Fah-expressing hepatocytes occupied over 95% of the liver tissue 9 months after the treatment. Moreover, CRISPR/Cas9-mediated gene therapy prevented the progression of liver cirrhosis, a phenotype that could not be recapitulated in the HTI mouse model. These results strongly suggest that Cas9n-mediated genome editing is a valuable and safe gene therapy strategy for this genetic disease.

Citing Articles

Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group.

Cavazza A, Molina-Estevez F, Plaza Reyes A, Ronco V, Naseem A, Malensek S Mol Ther Nucleic Acids. 2025; 36(1):102457.

PMID: 39991472 PMC: 11847086. DOI: 10.1016/j.omtn.2025.102457.


Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine.

Azeez S, Hamad R, Hamad B, Shekha M, Bergsten P Front Genome Ed. 2024; 6:1509924.

PMID: 39726634 PMC: 11669675. DOI: 10.3389/fgeed.2024.1509924.


liver targeted genome editing as therapeutic approach: progresses and challenges.

Simoni C, Barbon E, Muro A, Cantore A Front Genome Ed. 2024; 6:1458037.

PMID: 39246827 PMC: 11378722. DOI: 10.3389/fgeed.2024.1458037.


Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses.

Park A, Lee J J Microbiol. 2024; 62(7):491-509.

PMID: 39037484 DOI: 10.1007/s12275-024-00159-4.


Precision in Action: The Role of Clustered Regularly Interspaced Short Palindromic Repeats/Cas in Gene Therapies.

Banda A, Impomeni O, Singh A, Baloch A, Hu W, Jaijyan D Vaccines (Basel). 2024; 12(6).

PMID: 38932365 PMC: 11209408. DOI: 10.3390/vaccines12060636.


References
1.
Kim D, Kim S, Kim S, Park J, Kim J . Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 2016; 26(3):406-15. PMC: 4772022. DOI: 10.1101/gr.199588.115. View

2.
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L . Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014; 11(4):399-402. DOI: 10.1038/nmeth.2857. View

3.
Ran F, Hsu P, Lin C, Gootenberg J, Konermann S, Trevino A . Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013; 154(6):1380-9. PMC: 3856256. DOI: 10.1016/j.cell.2013.08.021. View

4.
Ding Q, Strong A, Patel K, Ng S, Gosis B, Regan S . Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014; 115(5):488-92. PMC: 4134749. DOI: 10.1161/CIRCRESAHA.115.304351. View

5.
Doudna J, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213):1258096. DOI: 10.1126/science.1258096. View